Archivo de la categoría ‘Geología para todos’
El sismo de hoy (31 de octubre de 2023) en Chile

Hoy, el hermano país de Chile sufrió un nuevo sismo, esta vez de magnitud 6,6 Richter, lo cual implica una liberación de energía mucho menor que la de los grandes sismos que recurrentemente se producen en ese país. No obstante, se sintió también en Argentina, e inclusive en Córdoba, razón por la cual, me siento obligada a referirme a él aunque sólo sea para dejarles los enlaces a la información pertinente que puede tranquilizar a todos.
¿Dónde y cuándo se produjo el terremoto?
Según lo que informa el Centro Sismológico Nacional de la Universidad de Chile, el epicentro se sitúa unos 11 kilómetros al sur-este de Tongoy, que a su vez se encuentra alrededor de 430 kilómetros al norte de Santiago de Chile. Su hipocentro según esta fuente sería a 45 kilómetros de profundidad, pero según la información del Servicio Geológico de Estados Unidos sería más somero, ya que lo registra como a 35 km. Esta diferencia tiene que ver con las metodologías de medición y está en un rango medianamente aceptable.
La fecha y hora indicadas en el USGS son: 2023-10-31 a las 12:33:43 (UTC). Las coordenadas del hipocentro son 28.747° de latitud Sur y 71.570° de longitud Oeste.
¿Qué efectos merecen mencionarse?
Según la prensa argentina, el temblor se sintió moderadamente en San Juan y en Mendoza y hay informes de que en provincias más alejadas, como Córdoba, por mencionar una, se pudo percibir en los edificios altos.
En la prensa chilena se mencionan algunos daños menores en la zona del epicentro, sin registro de pérdidas personales. Una observación interesante, que quedó inclusive filmada, es que las aves de la zona, algunos segundos antes de que el sismo se sintiera en su mayor liberación de energía, las aves se alejaron del lugar en grandes bandadas.
¿Qué información puede resultar de interés en este caso?
Según les mencioné más arriba, estos eventos son recurrentes, razón por la cual ya hay en el blog mucha información específica. Así, pues para evitar repeticiones, les recomiendo seguir todos los links que les voy dejando en este post para encontrar las explicaciones de cada uno de los términos utilizados.
Además, para temas muy directamente relacionados con el evento de hoy les recomiendo las siguientes lecturas:
- Para saber cuál es el contexto regional, lean este post.
- Para entender por qué el sismo se sintió en provincias de Argentina, vayan aquí.
- Para conocer cómo se producen los diversos efectos de un terremoto lean esto.
- Sobre los métodos de predicción de sismos lean esto.
- Para conocer cómo se registran los sismos lean este post y todos los que aparecen al pie de él como relacionados.
- Para saber cómo actuar ante un sismo lean aquí.
- Y como yapa, acá tienen las diez preguntas más frecuentes sobre terremotos.
En cada post, sigan los links que les voy dejando para alcanzar un conocimiento más completo sobre el tema; y aprovechen también los posts sugeridos al final de cada uno de los que vayan leyendo.
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: La imagen que ilustra el post es del Servicio Geológico de los Estados Unidos. (USGS)
¿Cuál es la diferencia entre acratoterma y acratopegia?

Hoy vamos a conocer dos términos para ampliar nuestro vocabulario geológico técnico. Ambos se refieren a las aguas subterráneas y son a veces confundidos entre sí.
¿Qué significa acratoterma?
La palabra deriva del griego akratoterma (Ακρατοτερμα en griego antiguo), que a su vez se conforma con los términos ákratos (ακρατος) que significa puro o sin mezcla, y terma (τερμα) que quiere decir agua o fuente termal, y su usa para designar aquellas termas con temperaturas superiores a 20 ° C, pero que no van más allá de los 50, y que no contienen más de 1 gramo por litro de agua.
¿Qué significa acratopegia?
En este caso, para la palabra original, akratopegia (αξρατοπεγια) la raíz griega se compone también de ákratos pero el término pegia (πεγια) sólo significa fuente. Esto es así porque se trata de aguas que no sólo no superan el límite crítico de 1 gramo de sustancias minerales por litro de agua, sino que además no tienen temperatura mayor a los 20 ° C.
Con este aporte, van aumentando su vocabulario, y aprendiendo a hablar con más propiedad.
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
Pangea y Rodinia, formación y dispersión. Parte 2.

Este post es continuación del de la semana pasada, de modo que deberían empezar por leer ése antes de internarse en el de hoy.
La semana pasada hemos respondido a las siguientes preguntas:
¿Lo que contaremos ahora son meras especulaciones o existen pruebas fehacientes?
¿A qué se llamó Pangea?
¿Según las pruebas existentes, ¿cómo se habrían ido formando los actuales continentes?
A partir de allí hoy continuamos con las preguntas que habían quedado pendientes.
¿Qué habría sucedido en tiempos más remotos, antes de Pangea?
Si pensamos en aquella ley fundamental de la Geología que conocemos como del actualismo, ya tendremos una pista interesante. Difícilmente la historia de Pangea carezca de un antecedente más antiguo, en un planeta que ha evolucionado por más de 4.500 Ma (millones de años).
De allí que se asume que existieron al menos otros dos supercontinentes antes de Pangea. El más antiguo de ellos se conoce como Kenorland, y se habría formado hace unos 2.700 Ma, provocando un evento que cambiaría el curso de la historia del planeta: un cambio significativo en la composición atmosférica preexistente.
Ese evento se conoce como «la Gran Oxidación» o GOE por sus siglas en inglés, correspondientes a: Great Oxidation Event (GOE). En efecto, antes de la formación del supercontinente la composición de la envoltura gaseosa, y aun de los océanos era rica en metano, lo cual favorecía la proliferación de las bacterias anaeróbicas. Las aeróbicas, en cambio, estaban relegadas a fondos abisales del océano. Al ocurrir la colisión de placas continentales- según mecanismos que pronto serán tema de otro post) esos fondos marinos llegaron a situaciones superficiales, formando en muchos casos lagos someros y mares interiores.
Desde ellos, las bacterias aeróbicas comenzaron a inyectar oxígeno libre en el aire, que fue cambiando lentamente su composición dominante. Toda la historia de la vida en la tierra tomó entonces otro rumbo, con sus lógicas consecuencias también sobre los procesos geológicos.
Alrededor de 300 millones de años más tarde, Kenorland inició su desintegración en continentes menores, por la deriva de las placas corticales que los portaban, de un modo semejante a como derivan hoy los remanentes de Pangea.
¿Qué es Rodinia?
Comencemos por su nombre. Rodinia procede del ruso родить (rodit), que significa «dar nacimiento», o bien de родина (rodina), que se traduce como «lugar de nacimiento», en segura alusión a los continentes menores que se separaron desde ella.
Rodinia es un supercontinente que se supone existió entre Kenorland y Pangea, es decir hacia finales del Proterozoico. Su formación dataría de hace unos 1.100 a 900 Ma, y su nueva dispersión habría comenzado hace entre 750 y 633 Ma.
Rodinia tuvo una historia evolutiva también decisiva ya que todos los continentes que hoy componen el planeta habrían ya estado reunidos en ella, en una gran masa que se ubicaba en posición dominantemente ecuatorial en el geoide.
Esto es importante, ya que las masas terrestres reflejan más luz del sol que los océanos, con lo que el balance térmico para la Tierra toda se hizo considerablemente menor que ahora, ya que hoy las grandes extensiones oceánicas del área ecuatorial absorben más energía solar.
Rodinia habría sido en consecuencia una masa fría, y los científicos asumen que la Tierra fue por millones de años una gran bola de nieve. Fueron los volcanes los que con la emisión de gases de efecto invernadero fueron cambiando esas condiciones, al generar un calentamiento que descongeló los glaciares, aumentando el nivel del mar, y permitiendo una nueva proliferación de la vida en ellos.
Estas condiciones duraron hasta hace unos 750 millones de años, cuando Rodinia comenzó a fragmentarse en ese ciclo que ya hemos reconocido.
Las placas llevaron en su deriva a los continentes resultantes a una nueva reunión que conformó la Pangea de cuya historia hablamos el lunes pasado.
¿Cuáles son las pruebas?
Obviamente que las hay. Por supuesto están sujetas a interpretación y pueden surgir conclusiones erróneas, pero en general, cuanto menos nos alejamos en el tiempo, las pruebas son más completas, y evoluciones posteriores las han ido confirmando. Tal es el caso para las derivas a partir de Pangea.
Para las correspondientes a los otros dos supercontinentes más antiguos, los debates, discusiones e interpretaciones divergentes, cuestionadas o cuestionables son por lógica muchos más.
Pero puede decirse por ejemplo que para el GOE hay un rastro relativamente claro que queda registrado en las piritas, que sólo pueden formarse en ambientes reductores, de modo que según su abundancia relativa, puede deducirse aproximadamente cuándo comenzó la atmósfera terrestre a enriquecerse en oxígeno.
Respecto a Rodinia, su conformación y posterior dispersión cuenta con pistas del mismo tipo que las de Pangea, aunque en sitios mucho más restringidos y en registros muy obliterados o enmascarados por los múltiples cambios posteriores.
De todas maneras, esos escasos registros son también esencialmente los fósiles, los complejos litológicos y los rasgos paleomagnéticos.
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
La imagen que ilustra el post es de este sitio.
Pangea y Rodinia, formación y dispersión. Parte 1.

Ya hemos empezado hace tiempo a presentar los lineamientos de la Tectónica Global o de Placas, y hoy nos vamos a detener (por dos lunes consecutivos) en la historia que ha podido establecerse con relación a la evolución de esos continentes que viajan pasajeros de las placas de las que hablamos la última vez, acercándose, alejándose o deslizándose lateralmente, unos respecto a otros.
Y como ya lo hemos repetido varias veces, son las placas las que se mueven y sobre ellas puede o no haber porciones continentales. Pero hoy queremos ver precisamente cómo se han configurado los continentes actuales, y no prestaremos mucha atención a las partes oceánicas, sobre las que insistiremos en otro momento. Mucho más adelante también veremos la predicción de su forma futura.
¿Lo que contaremos ahora son meras especulaciones o existen pruebas fehacientes?
En un post anterior ya he subido las más que numerosas pruebas que demuestran que los desplazamientos de las placas han ocurrido efectivamente, y por eso no las repetiré aquí, sino que les dejo el link para que vayan a leerlas en el post correspondiente.
¿A qué se llamó Pangea?
Según las reconstrucciones de las antiguas posiciones de las capas corticales portadoras o no de continentes, ha podido establecerse que a lo largo de los millones de años de su historia, la Tierra ha sobrellevado al menos un par de ciclos, de dispersión y reunificación sucesivas de continentes.
La más reciente de esas dispersiones- la que todavía está hoy en pleno curso- reconoce su origen a partir de un supercontinente denominado Pangea, que habría estado rodeado de un océano universal denominado Panthalassa.
Ambas palabras reconocen su origen en el griego antiguo, en el que Pangea (Πανγεα) es la unión de los términos pan (παν) =todo y gaia (γαια)= tierra, es decir que significaría «toda la tierra», o según algunos prefieren traducir, la «tierra universal».
A su vez, Panthalassa (παντηαλασσα) es la combinación de los vocablos pan, que ya explicamos y thalassa (τηαλασσα) mar, significando «todos los mares», o «mar universal».
Esta situación de una tierra universal rodeada por un único océano, fue la culminación de un ciclo previo de reunión de placas con continentes dispersos, etapa de la cual hablaremos la semana próxima por ser bastante menos conocida y porque su reconstrucción es más especulativa.
Esos continentes que habrían «vagabundeado» desde el Proterozoico, es decir tiempos precámbricos, ya habrían generado la Pangea hacia finales del Paleozoico, pero no quisieron quedarse quietos, sino que iniciaron el nuevo ciclo de ruptura y deriva del que hablaremos a continuación.
¿Según las pruebas existentes, ¿cómo se habrían ido formando los actuales continentes?
Aproximadamente en el Final del Carbónico, ya los continentes estaban soldados en el supercontinente llamado Pangea, que sólo mantuvo una relativa paz por escasos 70 millones de años (aproximadamente), antes de que los díscolos retazos que la conformaron volvieran a iniciar un ciclo de rupturas y nuevas derivas, que comenzó a insinuarse en el Pérmico (tal como se ve en la Figura que ilustra el post) a través de una línea de debilidad entre continentes que constituirían después los hemisferios norte y sur.
Ya en el Triásico, los continentes australes se habían separado en una masa denominada Gondwana, y los septentrionales constituían la Laurasia. la separación entre ambos hemisferios en ciernes fue progresivamente ocupada por el mar de Tethys, antepasado del actual Mediterráneo. Si analizan la figura, al comenzar a abrirse, la Pangea tenía una forma algo aproximada a una C, cuya panza fue siendo ocupada por ese mar, con una extensión enormemente mayor que el Mediterráneo que podríamos considerar su relicto.
Más o menos en ese tiempo, ya comienza lo que hoy es la India su viaje individual, que mucho más tarde la «enclavaría» en Asia. También se debilitan las uniones entre Asia y América al norte; y entre los demás continentes al sur.
Ya en el Jurásico, ha comenzado a formarse el Atlántico Norte, Madagascar está en plena separación de África, y América del Sur ha comenzado a derivar hacia el N-NW, disminuyendo sus conexiones con lo que llegaría a ser Antártida y Australia, aunque tenga aún una gran continuidad con África. Esa conexión se va perdiendo hacia el límite Jurásico- Cretácico.
A partir de entonces se alcanza progresivamente la actual configuración, la cual se consolida alrededor de los comienzos del Terciario. Por supuesto, el ciclo continúa todavía hoy, por lo cual, todo lo dicho no es más que una equematización de un proceso en curso.
Hasta aquí llegamos por hoy, A partir de aquí nos quedan para el próximo lunes las siguientes preguntas:
¿Qué habría sucedido en tiempos más remotos, antes de Pangea?
¿Qué es Rodinia?
¿Cuáles son las pruebas?
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
Hablemos del volcán Erebus
No hace mucho, les conté una bonita historia que relaciona el nombre Erebus con la antigua mitología griega, y les prometí que hablaríamos en algún momento de la parte más geológica. Éste es el momento.
¿Dónde queda el volcán Erebus y qué características generales tiene?
Ya les adelanté en el post que he linkeado más arriba, que el Erebus es el volcán más austral del mundo. Se encuentra en la isla de Ross, que forma parte del Continente Antártico, bajo bandera argentina, y se encuentra permanentemente englazado. Sus coordenadas son: 77°53′ de latitud Sur y 167° 17′ de longitud Oeste.
Se trata de un estratovolcán poligenético (de intraplaca), ya que su parte inferior está constituida como un volcán en escudo, mientras más arriba es claramente estratificado.
Su altitud es de 3.794 msn, es decir que se trata de un volcán relativamente bajo. Este hecho, unido a la continuidad y persistencia de su actividad, permite la realización de estudios vulcanológicos de largo plazo.
Otro de sus rasgos característicos es que contiene en su cráter un lago de lava fonolítica convectiva, situación poco común en el planeta. Presenta además varios conos secundarios o adventicios, en el interior mismo del volcán. La conjunción de ambos rasgos, genera gases calientes que se movilizan a través de grietas y fracturas en las rocas volcánicas que rodean la cumbre, y tallan intrincadas redes de cavernas de fusión, en el hielo circundante.
¿Desde cuándo se lo conoce?
Este volcán fue descubierto el 27 de enero de 1841 por el explorador polar Sir James Clark Ross, en cuyo homenaje la isla lleva ese nombre, y cuyas naves se llamaban HMS Erebus y HMS Terror, nombres que les fueron asignados a los mayores volcanes del territorio.
Hoy es motivo de numerosos estudios científicos, por los motivos que ya he señalado más arriba, y se cuenta con seguimientos continuados desde 1972.
¿Qué rasgos geológicos lo caracterizan?
Es digno de mención especial, el hecho de que existen capas de piroclastos o tefras, como también se las llama, muy bien preservadas en el hielo azul, lo que además permite hacer buenas correlaciones estratigráficas y dataciones confiables.
La expresión superficial de tefras en el hielo es por lo general una delgada línea dorada, asociada a veces a depresiones de fusión pendiente abajo. Suelen tener espesores de entre 0, 5 y 3 cm, aunque ocasionalmente de manera más desordenada pueden alcanzar hasta un metro.
El análisis geoquímico de las tefras da por resultado una composición fonolítica, que es bastante homogénea para los últimos 40 mil años. Si bien no es extremadamente raro que una misma cámara magmática provea materiales químicamente semejantes a lo largo de periodos muy extensos, sí es poco corriente que todos los productos de las erupciones, sean lavas, bombas, o cenizas resulten también tan similares.
El hecho de que esto suceda en el Erebus, sin que se produzcan procesos de diferenciación magmática notables, indica que el reservorio de magma ha sido estable por mucho tiempo. Dos mecanismos posibles se han sugerido para esta estabilidad:
- la cámara está compuesta por varios cuerpos de magma que evolucionan fraccionándose hasta el mismo grado, y cada nuevo cuerpo fundido se equilibra rápidamente con el resto del magma, o
- hay un solo y gran volumen de magma que no evoluciona más allá porque se encuentra en equilibrio con las condiciones de su profundidad de emplazamiento.
¿Cuál es la génesis de su actividad?
El volcán Erebus ha evolucionado a lo largo de los últimos 1,3 millones de años, con productos que pasaron desde la basanita hasta la actual composición de fonolita.
En los últimos 100.000 años, hubo al menos dos colapsos que dieron origen a calderas, y numerosas emisiones de lava y erupciones explosivas. Los dos colapsos habrían ocurrido entre 80 y 25 ka antes del presente, el primero; y entre 25 y 6 ka el segundo.
La actividad posterior se asume como de erupciones del tipo estromboliano y simples flujos de lava. No obstante, habría habido también erupciones freatomagmáticas (también denominadas hidromagmáticas) de gran violencia. Estas últimas habrían ocurrido luego de intervalos de quietud, en que el cráter se habría rellenado de hielo y nieve. Al reactivarse el volcán, se habrían fundido generando las erupciones freáticas que eliminaron el exceso de agua del cráter.
Se recuerdan erupciones mayores, todas estrombolianas, en los años 1984, 2005 y 2007. Hubo dos pequeñas erupciones freatomagmáticas o hidromagmáticas en 1993, y una cinerítica el 15 de diciembre de 1997.
Todo el sistema volcánico de la Antártida está directamente asociado con el Rift Terror, relacionado a su vez, con el Sistema del Rift Antártico Occidental. Por debajo de la Isla de Ross se ha observado una anomalía térmica que podría representar una pluma del manto portadora de calor.
¿Puede agregarse algo más?
El gran interés que reviste este volcán es su extenso registro estratigráfico de tefras incluidas en el hielo continental, muchas muestras de las cuales, han sido sometidas a dataciones por diversos métodos y a análisis químicos, físicos y ópticos de mucho detalle, permitiendo una comprensión confiable de su propia historia, y de la de la región.
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: La imagen que ilustra el post es de este sitio.