Archivo de la categoría ‘Geología para todos’
Nociones básicas sobre la atmósfera. Parte 3

Este post es continuación de los dos de las semanas inmediatamente pasadas, de modo que deberían empezar por leerlos antes de internarse en el de hoy. En el primero de ellos respondí las siguientes preguntas:
¿Qué es la atmósfera y qué espacio ocupa?
¿Qué funciones cumple?
En la parte 2, respondí a las preguntas:
¿Cuál es su composición actual?
¿Fue esa composición diferente en el pasado?
Desde allí retomamos hoy nuestra conversación, respondiendo a las preguntas faltantes:
¿Cómo se divide la atmósfera?
En principio, una apretada síntesis se observa claramente en el cuadro que ilustra el post, pero de cada una de esas capas hay bastante para decir, y límites para agregar, y ahora vamos a ello.
Desde abajo hacia arriba componen la atmósfera las siguientes capas:
- Tropósfera: se extiende desde la superficie de la Tierra hasta una altura máxima de 18 km en el ecuador, pero con un límite a los 9 sobre los polos. Su composición es la ya mencionada en la primera parte de este tema, pero por su proximidad con la hidrósfera y con la corteza, hay hasta los 500 m de altura, un contenido aumentado de vapor de agua y de polvo en suspensión. Presenta una activa circulación del aire tanto en sentido vertical como horizontal, y un descenso paulatino de la temperatura con la altura, según un gradiente de aproximadamente un grado cada 150 m. Pasa hacia la capa siguiente a través de la zona transicional conocida como tropopausa, en la cual la temperatura llega a descender hasta -70° C,
- Estratósfera: notablemente, aquí vuelve a aumentar la temperatura progresivamente hasta unos 15° C en la zona transicional que la separa de la mesósfera, conocida como estratopausa, y que se extiende en las proximidades de los 50 a 60 km. En la estratósfera la circulación horizontal es prácticamente la única que tiene lugar, con vientos que pueden alcanzar los 200 km/h. De gran importancia en ella es la presencia de la capa de ozono, (ozonósfera) resultante de la disociación del oxígeno, y que actúa como pantalla protectora de las radiaciones peligrosas para la vida terrestre.
- Mesósfera: ocupa el espacio entre los 50 o 60 (según dónde se mida) y los 80 km de altura. Vuelve a disminuir la temperatura, hasta alcanzar en su zona de límite superior transicional, la mesopausa, los -124°C.
- Termósfera: entre los 80 y los 450 km de altura, se conoce también como ionósfera, ya que allí las radiaciones solares de alta energía liberan electrones de los constituyentes atmosféricos, que resultan por ende ionizados, y elevan la temperatura de esta capa hasta cerca de los 1.000° C. Es aquí donde tienen lugar las auroras boreales (de las que ahora que lo pienso debo hacer un post en algún momento).
- Exósfera: que como señalé al responder la pregunta respecto al espesor de la atmósfera, para algunos autores ya es parte del espacio exterior, y de allí le viene el nombre. No obstante, ocupando el espacio entre los 450 y los 900 Km, muchos preferimos incluirla en la atmósfera por su importante función como filtro de radiaciones cósmicas y por ser allí donde son interceptados y destruidos (al menos en parte) por fricción, los meteoritos entrantes.
- Magnetósfera: que se extiende desde los 900 km hasta prácticamente su desaparición por enrarecimiento del aire. Allí se encuentran las bandas de radiación llamadas cinturones de Van Allen.
¿Qué puede agregarse?
Más allá de las funciones que fueron mencionadas en la primera parte de este post, publicada el lunes pasado, tienen lugar en la atmósfera, ocasionalmente, eventos con consecuencias de gran importancia, a veces fatales, como por ejemplo la inversion térmica de 1952, y otras situaciones que serán motivo de posts individuales en un futuro cercano. Les aseguro que son muy interesantes,
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
Acerca del sismo de la fecha (21-6-2023) en la zona serrana de Córdoba.

Otra vez debo salirme de programa para responder a las preguntas de muchas personas preocupadas por acontecimientos geológicos. Esta vez se trata de un sismo en nuestra propia provincia.
Para leer algunas generalidades sobre los terremotos pueden entrar en este post, y seguir sus links o posts relacionados que aparecen al pie del que les recomiendo, ya que todo lo que ya he explicado en otras ocasiones no será repetido aquí.
¿Cómo puede describirse el evento de la fecha?
El sismo tuvo lugar a las 4h 50 minutos de la hora local, con una magnitud Richter de 3,1, lo cual implica muy baja energía. Tanto es así que en el registro diario de todos los eventos del mundo que lleva a cabo el USGS, los terremotos de magnitud inferior a 5, por lo general ni siquiera se contabilizan.
El hipocentro se situó a 25 km al noroeste de Cosquín, con profundidad de alrededor de 20 km, lo cual es muy somero. La sacudida se sintió en Cosquín, Carlos Paz, Unquillo, Icho Cruz y localidades vecinas, llegando a ser percibido en los edificios altos de la ciudad capital. Afortunadamente no se registraron daños personales ni materiales de importancia.
¿Por qué se sintió tan fuerte pese a ser de baja magnitud?
Precisamente porque como he señalado más arriba la profundidad era muy escasa, con lo cual la energía liberada no se disipó demasiado antes de llegar a la superficie. Por otra parte, el horario en que se registró implicó que mucha gente estuviera en reposo, lo que las hace más sensibles a los efectos que estando en actividad podrían no percibirse.
¿Por qué no se produjeron daños?
Esto se relaciona principalmente con la magnitud muy baja, pero además con la vulnerabilidad, y susceptibilidad, tal como se explican en este post.
¿Cuál es el marco geológico?
Tal como dije más arriba, no repetiré temas ya expuestos en el blog, de modo que esta respuesta pueden leerla aquí.
La razón por la cual hay sismos en la Provincia de Córdoba con relativa frecuencia está explicada en este post.
¿Qué se puede agregar a lo dicho?
De cada tema geológico puede hablarse casi hasta el infinito, porque todos los temas se relacionan entre sí, en el marco de un sistema muy complejo. Pero para tener una visión un poco más completa, les recomiendo hacer click en cada uno de los links que les he ido dejando en este post.
¿Qué cabe esperar ahora?
Como siempre les digo, si bien puede haber numerosas réplicas, éstas deberían ser de menor intensidad, porque la mayor cantidad de energía ya se liberó. Siendo el primer sismo de tan baja magnitud, es probable que los demás resulten imperceptibles.
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: La imagen que ilustra el post es de este sitio
Nociones básicas sobre la atmósfera. Parte 2

Este post es continuación del de la semana pasada, de modo que deberían empezar por leerlo antes de internarse en el de hoy. En él respondí las siguientes preguntas:
¿Qué es la atmósfera y qué espacio ocupa?
¿Qué funciones cumple?
Desde allí retomamos hoy nuestra conversación, respondiendo a las preguntas faltantes:
¿Cuál es su composición actual?
Lo primero a tener en cuenta es que el aire es una simple mezcla mecánica que no implica reacción química entre sus componentes individuales, de allí que puedan separarse y volverse a mezclar en función de condiciones físicas.
Por otra parte, la relación cuantitativa entre los diversos componentes del aire no es constante a lo largo de todo el espesor atmosférico, y varía también a lo largo del tiempo, por lo cual, lo que anotaremos a continuación no será sino un promedio bastante representativo para cada zona de la atmósfera.
En las zonas inferiores, en contacto con la superficie terrestre, el aire está compuesto esencialmente por dos elementos: un 78,09% de nitrógeno y 20,94% de oxígeno.
Eso deja menos de 1% para componentes menores, como vapor de agua, polvo, carga biológica, CO2 y gases raros. Por supuesto, localmente puede haber cambios sustanciales en las proporciones por la presencia de contaminantes a veces en cantidades alarmantes, sobre todo si el contenido es rico en CO, altamente tóxico.
A medida que se asciende en la atmósfera la cantidad de oxígeno- a partir de los 10 km- comienza a disminuir hasta desaparecer hacia los 100 km. Su espacio es ocupado por un aumento de nitrógeno, pero luego desaparece rápidamente más o menos a los 40 km de altura. Es a partir de los 60 km que se registra un aumento notable de hidrógeno que llega a ser predominante a los 120 km, con helio como acompañante.
Algunos autores denominan homósfera a la porción atmosférica por debajo de los 80 km, por ostentar una composición relativamente constante. Debido a que los cambios se aceleran desde allí hacia arriba, llaman en cambio a esa parte, heterósfera. Y asumen también una zona transicional llamada homopausa, entre los 60 y 80 km.
La composición mencionada por supuesto es muy dinámica, ya que hay intercambios permanentes, que no alcanzan a modificar las relaciones salvo en ocasiones particulares, que menciono más abajo.
Puede considerarse como el intercambio más constante el que se produce en la respiración de los seres vivos, que toman oxígeno y devuelven CO2, siendo la fotosíntesis de las plantas verdes la que repone a través del intercambio inverso, el equilibrio composicional del aire.
Entre las condiciones que temporal y localmente generan cambios muy notables en la composición atmosférica, debemos considerar las emisiones volcánicas y postvolcánicas, las concentraciones fabriles y urbanas con liberación de gases de combustión, los incendios, y las eventuales explosiones artificiales entre otras circunstancias de menor impacto
¿Fue esa composición diferente en el pasado?
Sin duda alguna, la composición original de la atmósfera distaba mucho de la actual, y sólo su evolución hacia el estado presente permitió la eclosión de la vida terrestre.
Según las especulaciones (abundantes) y algunas pruebas (más escasas) la historia de la atmósfera habría comenzado con el nacimiento mismo de la Tierra, hace (según las últimas aproximaciones) alrededor de 4.600 millones de años.
Se asume que durante los primeros 500 millones de su historia, la atmósfera contenía vapor y gases expelidos durante la agitada formación del planeta en ciernes. Dichos gases podrían haber sido hidrógeno (H2) vapor de agua, metano (CH4), helio (He) y óxidos de carbono. A esa mezcla se la llama «atmósfera primigenia o primordial».
Esa atmósfera original, no obstante, se perdía casi tan rápidamente como se iba generando, porque tanto la temperatura como la gravedad de esa Tierra diferían de las que caracterizan actualmente al planeta. La suma de una temperatura mayor y una aceleración de la gravedad menor facilitaban el desprendimiento de los gases livianos como el hidrógeno y el helio, que escapaban al espacio barridos por el viento solar. Ni siquiera en las condiciones actuales del planeta, pueden conservarse en torno a ella cantidades importantes de gases como el helio y el hidrógeno,
Reconocida esta situación, los gases que se iban liberando en los procesos de formación de la propia corteza, fueron cambiando la composición de la envoltura gaseosa, que hace unos 4 mil millones de años, estaba mayormente constituida por dióxido de carbono (CO 2 ), monóxido de carbono (CO), moléculas de agua (H 2 O), nitrógeno (N 2 ) e hidrógeno
(H).
Con esa composición, y la temperatura de la Tierra ya por debajo de los 100°C, tuvo lugar la formación de la hidrósfera, de resultas de la condensación de vapor de agua, presente en grandes masas de agua, en las cuales, a su vez, comenzaron a disolverse el dióxido de carbono y otros gases, dando lugar a una atmósfera de carácter reductor, sin oxígeno libre y con abundancia de metano y amoníaco. Les recuerdo que sobre esta composición es que se realizó el experimento de Miller del que ya les hablé, y es la que habría dado lugar a las formas orgánicas más primitivas.
No obstante, faltaba aún para que hubiera en la atmósfera el oxígeno libre que hoy nos es indispensable. Sólo alrededor de 2.500 Ma atrás, habrían aparecido en el mar los primeros organismos unicelulares anaeróbicos, y todavía más tarde, hace unos mil millones de años, algunos de esos organismos, llamados algas azules empezaron a usar energía del Sol para dividir moléculas de agua (H 2 O) y dióxido de carbono (CO 2 ), desde las cuales obtuvieron compuestos orgánicos por un lado y oxígeno libre por el otro.
Ya la composición de la atmósfera se va aproximando a la actual, y va creando las condiciones para la eclosión de la vida que se produciría hace unos 600 millones de años, cuando la vida marina, a través de otros intercambios había llegado a formar niveles de ozono suficientes para absorber en parte la luz ultravioleta. Eso fue lo que habilitó la aparición de organismos sobre los continentes. Los intercambios vitales de esos organismos terminaron de modelar la composición actual de la atmósfera.
Hasta aquí llegamos hoy. el próximo lunes veremos:
¿Cómo se divide la atmósfera?
¿Qué puede agregarse?
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
Nociones básicas sobre la atmósfera. Parte 1

Hoy vamos a comenzar a completar un poco más un tema que presenté hace mucho tiempo: la composición de la Tierra. En efecto, no sólo constituyen el planeta las geosferas internas y superficiales, sino también las que la circundan (como la atmósfera de que hablaremos hoy) y las que ocupan lugares incluidos en partes de las mencionadas, como son la biosfera y la hidrósfera (de la que ya hemos hablado bastante).
¿Qué es la atmósfera y qué espacio ocupa?
Se define como atmósfera a la envoltura gaseosa continua que rodea a la Tierra. Es retenida en torno al planeta, por la atracción gravitacional ejercida por él. Por esa razón acompaña los movimientos de rotación y traslación de la Tierra.
La atmósfera se asienta sobre continentes y mares, pero su límite superior no es muy claro, aunque respondería al límite de la atracción de la gravedad, que de manera teórica se encontraría entre unos 300 y 450 km de altura. Más allá de esa zona, ya los gases no resultan retenidos y comenzaría un espacio exterior relativamente vacío. Hay autores que consideran, en cambio que el límite debería considerarse mucho más allá, a una altura próxima a los 1.000 km, donde se hace apreciable el viento solar, que asumen no ya como un evento atmosférico sino correspondiente al espacio que excede al planeta.
Siendo la atracción gravitacional mayor en los polos, debido al propio achatamiento de la Tierra, el espesor de la atmósfera responde a una configuración similar, por lo cual tiene en el ecuador también un abultamiento como el planeta mismo. Y se estima el peso total de la atmósfera en unos 5,9 x1015 toneladas.
¿Qué funciones cumple?
Las funciones que cumple la atmósfera son resultado directo de sus características y de las propiedades del aire que la compone. (El aire es la mezcla de diversos gases, punto que analizaremos más abajo). Se mencionan como las más destacadas, las siguientes peculiaridades:
- Radiación difusa: es la capacidad de dispersar la luz en todas las direcciones del espacio. Efectivamente, a lo largo de las horas diurnas, no sólo están iluminadas las zonas a donde llegan en forma directa los rayos solares, sino también todo el espacio circundante. Lo entendemos mejor si pensamos en una habitación cerrada, a donde no entran los rayos de sol, y que sin embargo está casi tan clara como el propio espacio abierto que se ve desde la ventana. Es decir que el aire resulta permeable a la luz y ella se transmite por él llevando esa claridad en todas direcciones.
- Transmisión del sonido: también las ondas sonoras se propagan por el aire atmosférico, permitiéndonos escuchar sonidos próximos o distantes. Al ascender en la atmósfera, por ser el aire cada vez menos denso, la transmisión sonora se dificulta, hasta alcanzar lo que se conoce como «zona anacúsica», situada a unos 160 km de altura, donde las comunicaciones sonoras ya no son posibles.
- Solubilidad del aire: es una capacidad de vital importancia ya que si bien los diversos componentes gaseosos de la atmósfera no se disuelven con la misma facilidad, el hecho de que puedan hacerlo, ingresando en el agua de los espejos superficiales permite la vida que depende de la presencia de oxígeno. Si éste no fuera soluble en el agua las condiciones para la vida marina tal como la conocemos, no estarían dadas.
- Baja conductividad eléctrica: en las proximidades de la superficie terrestre el aire actúa casi como un aislante eléctrico, pero su conductividad aumenta con la altura, lo cual explica las descargas en las tormentas.
Esto en cuanto al aire como sustancia, ahora veremos las funciones de la atmósfera como cuerpo o geósfera del planeta:
- Es el ámbito en que tienen lugar los fenómenos meteorológicos, de suma importancia en el modelado terrestre, a través de fenómenos como la erosión, la meteorización y la pedogénesis.
- Permite, por la constitución del aire de que está compuesta, la respiración de la mayor parte de los organismos vivos que pueblan el planeta.
- Es una protección eficaz contra el ingreso de materia desde el espacio exterior, ya que la mayor parte de los cuerpos, por ejemplo los meteoritos, que impactan el planeta se desintegran en la envoltura externa.
- Actúa regulando el balance térmico filtrando ciertos componentes de la radiación solar, muy específicamente a través de su capa de ozono.
- Es modeladora del clima, ya que en ella tienen lugar los movimientos que componen la precisamente denominada circulación atmosférica.
Por hoy sólo llegaremos hasta aquí, para retomar el hilo de la charla el lunes, abocándonos a responder las siguientes preguntas:
¿Cuál es su composición actual?
¿Fue esa composición diferente en el pasado?
Y dado lo extenso del tema, habrá una tercera parte el lunes siguiente, en que responderé a las preguntas siguientes.
¿Cómo se divide la atmósfera?
¿Qué puede agregarse?
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela. P.S.: La imagen que ilustra el post
Un paso más para armar el rompecabezas de la Tectónica global

En nuestras charlas he abordado tantos y tan variados temas, que no termino de completar lo que deben saber sobre la Tectónica global o de placas, pero lentamente vamos construyendo ese conocimiento sobre basamento sólido.
Hoy hablaremos sobre la parte más básica de la teoría de Tectónica de placas o global.
¿Qué se entiende por Tectónica de placas?
Los postulados básicos de esta teoría son relativamente sencillos, una vez que se ha accedido a toda la información previa, que más abajo les señalo, y son fundamentalmente dos.
El primer postulado indica que grandes áreas de la superficie externa de la Tierra se comportan como placas rígidas de una esfera, que no sufren desplazamientos significativos al interior de sus límites. Esto quiere decir que si se miden por ejemplo las distancias entre dos o más ciudades ubicadas dentro de la misma placa, esas mediciones permanecerán casi completamente invariables a lo largo de miles de años. Alguna variación en las medidas puede ocurrir de resultas de deformaciones locales y de la isostasia, pero no será relevante en comparación con el modelo completo. Es una premisa importante, y se complementa con la siguiente.
El segundo postulado expresa que cada una de las placas que componen la superficie del planeta se está moviendo en relación con las demás, según trayectorias complejas y con velocidades diferentes y ligeramente variables, lo cual da lugar a la construcción del relieve terrestre, y genera procesos muchas veces espectaculares, como algunos sismos y eventos volcánicos.
Ya en un post anterior les he señalado cómo esta Teoría tan abarcativa aporta explicaciones para una multiplicidad de características del planeta y de su historia y comportamiento. Les recomiendo ir a leer ese post.
Un detalle que no debe olvidarse es que los límites entre placas no se corresponden con los límites continentales, de modo que una placa puede ser enteramente oceánica, dominantemente continental o presentar una combinación de ambas situaciones. En los hechos, ninguna de las placas mayores es enteramente continental, pero sí habría algunas placas entre las menores que tendrían ese carácter.
En ningún caso debe confundirse deriva de placas con deriva de continentes, ya que esa vieja teoría ya fue desechada.
¿Qué se discute aún sobre la configuración de las placas?
Como ocurre con todo sistema complejo, no se termina de conocer en todos sus detalles, y sigue existiendo diversidad de posturas alrededor de algunos puntos, si bien nada contradice el cuadro general ya aceptado por la ciencia.
Pero ya que hay algunas controversias, es bueno señalar que eso forma parte del carácter mismo de la ciencia, y que siempre se debe estar listo para revisar lo que se conoce, a la luz de cada nuevo hallazgo.
Lo que se sigue revisando continuamente, y a veces va y viene de modo casi pendular se resume en los siguientes puntos sobresalientes:
- La profundidad de despegue de las placas superficiales. Inicialmente se hablaba de placas corticales, asumiendo que la superficie de separación era entre la corteza y el manto que la subyace. Más adelante, el reconocimiento de la existencia de la astenósfera, colocó el límite inferior de las placas, precisamente sobre ésta, es decir que se consideraron entonces placas litosféricas derivando sobre la astenósfera. Pero luego, al descubrirse que la astenósfera parecía estar ausente en algunas lugares, sin que por ello se imposibilitara el desplazamiento de las placas, algunos autores comenzaron a despreciar la importancia de esa capa más débil, y volvieron a referirse a placas corticales en lugar de litosféricas. Sigue siendo materia de opinión.
- El número mismo de las placas menores se discute todavía. Si bien las placas mayores son unánimemente reconocidas, no hay certeza acerca de las de menor tamaño, que podrían no estar todavía perfectamente contabilizadas. Nuevos descubrimientos reconfiguran sus formas, tamaños y límites.
- El carácter de los límites en determinados segmentos de los contactos entre placas tampoco es una discusión cerrada.
¿Qué teorías anteriores- debidamente corregidas – aportaron información a esta visión integradora?
Ya lo hemos adelantado en cada uno de los posts en que hablamos específicamente de cada una de ellas, pero conviene recordar en un pequeño listado cuáles fueron esos antecedentes, en su momento tan criticados por lo novedosos, y hoy revalorizados como los avances necesarios que en realidad fueron, en el camino hacia la construcción del paradigma hoy vigente.
En cada mención les pongo el link para que vayan a repasar los conceptos involucrados.
- Teoría de la deriva continental, de Wegener.
- Teoría de convección en el manto.
- Teoria de la expansión del fondo oceánico.
¿Cuáles son los nudos centrales de este paradigma?
Para decirlo en pocas palabras, además de los postulados básicos presentados arriba, los nudos centrales son los contactos entre las placas. Es allí donde la gran mayoría de las explicaciones del relieve terrestre y los procesos involucrados en sus cambios mayores se hacen comprensibles y es por lo tanto necesario analizar dichos contactos de manera un poco más detallada, lo que haré en sendos posts que iré subiendo próximamente.
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela. P.S.: La imagen que ilustra el post es de este sitio.