Archivo de la categoría ‘Paleontología’
El experimento de Miller-Urey. Parte 1
Hoy voy a ocuparme de un experimento que fue sumamente significativo en la historia de la Biología, y por ende, también de la Paleontología, ya que permitió una nueva mirada, alejada de las doctrinas religiosas imperantes en la época.
Me parece que, dado lo revolucionario de este experimento, y sobre todo por su efecto sobre el pensamiento posterior, amerita que hablemos un poco de quienes lo llevaron a cabo, de modo que comprendamos su verdadera e indiscutible calificación científica.
Y como ya es mi costumbre, cuando un post es demasiado largo, lo he dividido en dos partes, la segunda de las cuales aparecerá el próximo lunes. Hoy me ocuparé de las siguientes preguntas:
¿Cuál era el estado del conocimiento antes de esta comprobación?
Con anterioridad a esta comprobación experimental había habido- como ocurre siempre- antecedentes diversos que prepararon el camino, pero la convicción social mayoritaria seguía una de dos corrientes diferentes aunque igualmente antiguas, e igualmente carentes de pruebas que las sustentaran. Ellas eran: por un lado la generación espontánea, sin causa, sin disparador y sin procesos conocidos. Algo que según las diferentes posturas iba desde la explicación mágica a la fortuita, pero siempre sin ningún fundamento.
Por otro lado, reinaba la convicción religiosa, es decir el creacionismo atribuido a diferentes seres superiores según las distintas creencias, religiones o mitologías. En definitiva, algún o algunos seres de poderes infinitos, habrían generado seres vivientes según su gusto y capricho, sin seguir leyes físicas ni químicas comprobables.
Este experimento presentó por primera vez pruebas de un curso posible para la aparición de la vida. Más adelante analizaremos sus consecuencias, y posterior evolución.
¿Qué se puede decir de Stanley Miller?
Stanley Miller nació en Oakland, California, el 7 de marzo de 1930, y tal vez por el hecho de ser un contemporáneo, son pocos los datos de su biografía personal de que se dispone.
Se graduó como Licenciado en Ciencias, en la Universidad de California en 1951, y fue allí donde conoció a quien sería su profesor, mentor y copartícipe del experimento que hoy nos ocupa, y que le dio su merecida fama. De ese experimento vale la pena decir que lo realizó junto con Urey en 1953, sobre la base de una hipótesis sustentada por Oparin y Haldane acerca de las condiciones de la Tierra primitiva y su atmósfera, y de la posible aparición de vida en ella, por reacciones físico- químicas.
Sobre la base de los hallazgos de ese experimento, Miller obtuvo su doctorado en Química en la Universidad de Chicago, en el año 1954. Como dato curioso y ejemplificador, vale la pena mencionar que Urey se rehusó a aparecer como coautor en la primera publicación del experimento, para no opacar el lucimiento de su discípulo que había realizado la mayor parte de la tarea. Debido a esa geneosidad de Urey, el experimento se conoció como «de Miller», y es desde hace pocos años que ha comenzado a llamarse «de Miller-Urey», precisamente a instancias del propio Miller (otro ejemplo de honestidad y ética). Es así que podemos afirmar que ambos fueron dos grandes científicos, pero también dos grandes personas. ¡Tan distinto a lo que pasa con tantos «profesores» que se incluyen como coautores en trabajos en los que no aportaron nada, salvo el hecho de ser los jefes nominales!
Ya doctorado, fue profesor asistente entre 1958 y 1960, profesor asociado entre 1960 y 1968 y finalmente profesor titular de Química en la Universidad de California, sita en San Diego.
Dedicó sus esfuerzos a estudiar el origen de la vida, y fue considerado como pionero en el campo de la Exobiología, disciplina también conocida como Astrobiología, y que indaga sobre las posibilidades de que exista vida en otros cuerpos celestes.
Miller fue incorporado como miembro de la Academia Nacional de Ciencias de Estados Unidos; y como coronación de su carrera recibió una Medalla Oparin, instituida en homenaje precisamente a una de las personas sobre cuya hipótesis diseñó el experimento que lo posicionó como un referente de la Paleobiología, y que revolucionó toda la ciencia. No obstante, nunca accedió al Premio Nobel que muchos pensamos que habría merecido.
Stanley Miller falleció el 20 de mayo de 2007.
¿Quién fue Harold Clayton Urey?
Harold Clayton Urey nació en Walkerton, Indiana, el 29 de abril de 1893, y fueron sus padres el reverendo Samuel Clayton Urey y Cora Rebecca Riensehl.
Obtuvo un título en Zoología en la Universidad de Montana en 1917, lo que lo habilitó para trabajar en la compañía química Barrett de Filadelfia, Pensilvania. En 1923 se doctoró en la Universidad de California, y desde entonces y por un año estudió física atómica con Niels Bohr -¡nada menos!- en la Universidad de Copenhague.
Ya desde 1919 ejerció la docencia en diversas universidades, tales como la de Montana, entre 1919 y 1924; la Universidad Johns Hopkins desde 1924 hasta 1929; Universidad de Columbia entre 1934 y 1945. Más tarde fue profesor de Química del Instituto de Estudios Nucleares de la Universidad de Chicago, y docente en la Universidad de Oxford. En 1958 fue profesor en la Universidad de California, en San Diego.
Sus investigaciones científicas se enfocaron inicialmente en el aislamiento de isótopos pesados del hidrógeno, oxígeno, nitrógeno, carbono y azufre, lo que le valió recibir en 1934 el Premio Nobel de Química por la obtención de deuterio (hidrógeno pesado) y el aislamiento del agua pesada (óxido de deuterio, D-2O).
En 1940 se le otorgó la medalla Davy, concedida por la Science Royal Society.
Más tarde, y durante la Segunda Guerra Mundial dirigió, en la Universidad de Columbia, el grupo de investigación que elaboró métodos de separación de los isótopos de Uranio, y de producción de agua pesada. Si bien sus aportes contribuyeron al desarrollo de la bomba de hidrógeno, se incorporó luego al grupo de científicos atómicos que abogaron por un control internacional del uso de la energía atómica.
Entre sus múltiples trabajos realizó también investigaciones sobre Geofísica, Paleontología y el origen del Sistema Solar.
En 1966 obtuvo la Medalla de Oro de la Real Sociedad Astronómica, y en 1973 la medalla Priestley, concedida por la American Chemical Society.
Falleció a los 88 años de edad, en La Jolla, California el 5 de enero de 1981. Como homenajes póstumos a su notable actividad científica fueron bautizados con su nombre un cráter lunar, y el asteroide 4716.
A partir de aquí, seguiremos el lunes para contestar las siguientes preguntas:
¿En qué consistió el experimento?
¿Cómo se conoce la composición original de la atmósfera?
¿Qué se demostró con el experimento de Miller.Urey?
¿Qué efectos tuvieron esos resultados?
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: La imagen que ilustra el post es la de Stanley Miller y la he tomado de este sitio.
16 de Octubre, Día Internacional del Fósil.
Ya en 2017, la Asociación Paleontológica Internacional (IPA) estableció el Día Internacional del Fósil, que se conmemora cada 16 de Octubre.
La finalidad que se persigue es crear conciencia sobre el valor testimonial de los restos y huellas del pasado de la vida en la Tierra, que denominamos fósiles.
En esta fecha, se proponen e incentivan actividades a escala mundial con la participación de museos, asociaciones paleontológicas, coleccionistas, universidades y otros actores relacionados con el tema.
P.S.:, no es necesario que me manden saludos. ;D
Algunas «normas» de la evolución biológica. Parte 2
Como este post es continuación del de la semana anterior, en caso de que no lo hayan hecho ya, les recomiendo ir a leer la primera parte, antes de internarse en ésta de hoy.
La semana pasada contesté las siguientes preguntas:
¿Por qué es posible señalar algunas reglas evolutivas?
¿Cuáles serían las reglas evolutivas que han alcanzado mayor consenso entre los investigadores?
¿Qué es la complejidad progresiva de la biosfera?
Hasta aquà llegamos el lunes pasado, ahora seguiremos desde ese punto.
¿Qué es la ortogénesis?
Esta ley se relaciona claramente con la siguiente, según ya veremos. Pero definámosla ahora.
Comencemos por decir que en su concepción original, el término ortogénesis implicaba algún grado de contaminación teológica y filsosófica, que no resiste las objeciones científicas actuales.
En efecto, su formulación antigua implicaba un «diseño preestablecido» en la evolución, a la que se consideraba encaminada hacia algún fin último. Se proponía pues, para la evolución un camino prácticamente lineal hacia una meta perfecta. Y aquí, la contaminación religiosa atribuía la definición de esa meta a un propósito divino.
No obstante, los científicos propusieron mecanismos medianamente orientados en una dirección dada, pero que respondían a procesos genéticos regidos por principios biológicos y físico químicos, respondiendo en gran medida a factores ambientales, pero que no excluían mutaciones aleatorias.
El término ortogénesis requirió con el tiempo una redefinición profunda. En su concepción más actual, la ortogénesis se refiere simplemente a un principio según el cual se puede observar que allí donde se cuenta con los fósiles suficientes como para documentar los cambios progresivos de un género o familia en particular, dichos cambios no representan saltos en cualquier dirección, sino que una vez instalados, parecen seguir una dirección definida.
Esto se relaciona también con el éxito alcanzado por cada cambio en materia de supervivencia y adaptación a las condiciones ambientales. Una vez que un cambio, que inicialmente puede ser aleatorio, como ya vimos en otro post, mejora la competencia de los individuos portadores de dicho cambio, las sucesivas mutaciones tienden a acentuarlo.
¿Qué significa la irreversibilidad de la evolución?
El proceso evolutivo es aditivo, es decir que va sumando cambios, lo cual hace tan complejos los resultados, que una vez que se desarrolla un taxón diferente, sus individuos no retroceden jamás a ser lo que sus antepasados fueron.
Las aves, que evolucionaron desde los reptiles pueden sufrir mil cambios evolutivos generando nuevas especies, pero nunca regresarán a ser reptiles.
La explicación es simple: en cada estructura- y su correspondiente función- de los organismos vivos intervienen numerosos genes, combinados de manera compleja. Una nueva mutación, no reproduce esa misma combinación de genes. En situaciones de organismos más simples, con combinaciones más sencillas puede eventualmente producirse lo que se conoce como «homomorfismo», dando individuos parecidos, pero no idénticos en todos sus caracteres a los que quedaron atrás en el camino evolutivo.
Digamos entre paréntesis que el homomorfismo puede relacionarse con la convergencia adaptativa que veremos más abajo; pero puede ser también tema para un post en el futuro, porque es bastante entretenido.
¿Qué se entiende por especialización progresiva?
No es otra cosa que una gradual adaptación a las condiciones de vida en un lugar y situación dados. Por supuesto ocurre a lo largo de extensos intervalos y a través de numerosas generaciones. Normalmente la especialización se va acentuando no en el organismo en su conjunto, sino sobre alguna de sus partes. Tal el caso de las extremidades anteriores que a partir de los reptiles se fueron especializando para el vuelo hasta generar las alas que ostentan hoy sus descendientes, las aves.
Algunos científicos señalan que una especialización progresiva particular sería el aumento de la talla que culmina en un auténtico gigantismo, muchas veces preludio de la extinción de géneros, especies o inclusive taxones más altos. Ellos citan ejemplos como los anmonites, y dinosaurios, entre otros casos de desarrollo extremo previo a la extinción. Profundizaremos esto en el post que dedicaremos a las extinciones, pero ya hemos adelantado algo en el post sobre tipogénesis, tipostasia y tipólisis.
¿Cómo ocurre la adaptación al ambiente?
Se da en dos niveles: el del individuo, que aprende estrategias para mejorar sus condiciones particulares de vida, como podría ser la conducta juguetona, sumisa o hasta agresiva que asumen los animales callejeros en las zonas urbanas, para obtener comida; y a lo largo de generaciones, en el proceso evolutivo general. Ya explicamos aquí y en otro post que solamente los rasgos favorables para mejorar la adaptación al medio, son los que se perpetúan en el tiempo.
Como ya están esas explicaciones básicas, elijo ahora dos aspectos particulares que quiero destacar aquí y que están explicitados en la imagen que ilustra el post. Ellas son el isomerismo o convergencia adaptativa, morfológica o evolutiva, y la radiación adaptativa.
La convergencia evolutiva conduce a que individuos de grupos distintos, y hasta de biocrones muy separados entre sí, asuman formas muy semejantes, simplemente porque son las que mejor responden a las exigencias del medio.
En la imagen ven tres animales acuáticos, es decir que viven o vivieron en el mismo medio, y que perteneciendo a grupos muy diferentes, adoptaron todos una morfología hidrodinámicamente óptima para medrar en el océano, como es la fusiforme. Se trata de un mamífero, el delfín; un reptil extinguido, el ictiosaurio; y un pez, el tiburón. Los tres se parecen, sin ser de un mismo género.
El efecto inverso también ocurre, cuando desde un antepasado común surgen diversas especies adaptadas a ambientes diversos. En la imagen ven diversos ursus, es decir osos, que se ven morfológicamente diferentes porque también lo son los climas, relieves y alimentos disponibles en cada uno de sus hábitats.
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página esta registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: La imagen que ilustra el post es de este sitio.
Algunas «normas» de la evolución biológica. Parte 1
Este tema que empezamos a conversar hoy, nos ocupará dos semanas con sendos posts de lunes, porque es un poco extenso.
Por otra parte, este tópico tiene ya en el blog, muchos antecedentes que deberían leer. Todos ellos están con la etiqueta fósiles, y/o en la categoría Paleontología, e incluyen desde la definición de los fósiles hasta las pruebas y falsas contrapruebas de la evolución biológica, pasando por ítems como tipos de fósiles, procesos de fosilización, excavaciones paleontológicas, etc. Les diría que paseen un poco por todos esos posts para ir completando el conocimiento.
Volviendo al post de hoy, nuestra conversación trata una serie de «reglas» (así entre comillas, porque sabemos bien que la Naturaleza no sigue las reglas que nosotros proponemos) que se observan en el proceso evolutivo, y que tienen un cierto consenso entre los científicos. Hago esta salvedad porque la complejidad de la evolución ha determinado la existencia de diversas opiniones, casi todas muy autorizadas pero que no siempre son coincidentes. Tanto es así, que hasta hay quienes niegan de plano la evolución.
Por supuesto, el tema no se agotará en estos dos posts, sino que más adelante deberemso referirnos a muchos otros conceptos que completan estas ideas básicas, como son los relativos a extinciones, micro, macro y megaevolución, etc., etc. Pero eso será en algún momento futuro. Sólo ármense de paciencia, la Geología y sus ciencias afines son campos inagotables y llenos de sorpresas.
Dicho todo lo cual, elijo ahora algunas de esas «normas evolutivas», para tratar de comprenderlas.
¿Por qué es posible señalar algunas reglas evolutivas?
Estudios y análisis estadísticos sobre los registros fósiles permiten el reconocimiento de ciertas regularidades en el proceso evolutivo en su conjunto, indicando que no se trata de cambios caóticos que puedan dispararse en cualquier dirección, sino que responden a algunas pautas de una cierta lógica interna.
Esas «pautas rectoras» se complementan muchas veces con otras conocidas en el ámbito de la Biología y van acompañando, medianamente, los mayores cambios climáticos y ambientales de los que también se lleva registro.
¿Cuáles serían las reglas evolutivas que han alcanzado mayor consenso entre los investigadores?
Repito por enésima vez que mucho de lo que aquí les diga permanece en revisión crítica constante (bah, en realidad toda la ciencia está siempre revisándose, no sólo esta parte) y por eso tal vez mañana elegiría las reglas de otro modo, pero por hoy discutiremos las siguientes:
- Complejidad progresiva de la biosfera.
- Principio de ortogénesis.
- Irreversibilidad de la evolución.
- Especialización progresiva.
- Adaptación al medio.
¿Qué es la complejidad progresiva de la biosfera?
Si observamos los clásicos esquemas en que se pretende sintetizar las sucesivas apariciones de géneros y especies, lo que primero salta a la vista es que tienen un aspecto dendriforme, con un tronco común cuyas raíces se internan en los tiempos más remotos, y cuyas ramas van subdividiéndose y generando cada vez una copa más y más frondosa.
Esto es así, precisamente porque hay un aumento neto del número de especies que constituyen la flora y la fauna, aun después de descontar las muchísimas que corresponden a ramas que se truncan por las extinciones.
Y al hablar de complejidad creciente, no se trata sólo de una apreciación cuantitativa como señalamos más arriba, sino también cualitativa; puesto que las biotas más próximas al presente, también son más complejas en cuanto a sus anatomías, fisiologías y grados de organización en general. Comparadas en cambio con biosferas de tiempos muy remotos, la mayoría de estas últimas eran mucho más rudimentarias y más simples. Esto no implica la desaparición de organismos simples, sino lo inverso, es decir la aparición de organismos más complejos, que coexisten en muchos casos con aquéllos.
Lotze señaló en 1963 que las diferencias entre floras y faunas actuales y las de otros tiempos geológicos son una función directa de su distancia cronológica. A más distancia, mayores diferencias cuali y cuantitativas.
Hasta aquí llega el post de hoy. El lunes próximo responderemos a:
¿Qué es la ortogénesis?
¿Qué significa la irreversibilidad de la evolución?
¿Qué se entiende por especialización progresiva?
¿Cómo ocurre la adaptación al medio o ambiente?
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: La imagen que ilustra el post ha sido generada sobre la base de dos diapositivas de una presentación de la Profesora Paola Vázquez, que encontré en este sitio.
Paseos virtuales
La Facultad de Ciencias Exactas, Físicas y Naturales de la Universidad Nacional de Córdoba produce videos de gran interés, uno de los cuales comparto con ustedes a continuación.