Entradas con la etiqueta ‘Cosmos’
Efeméride: paso de la nave Pioneer 10 en una trayectoria muy próxima a Júpiter
Hoy hablaremos de un hecho que marcó un hito en la historia del conocimiento del Cosmos y que está muy próximo a cumplir un nuevo aniversario.
El 4 de diciembre de 1973, la nave Pioneer 10 pasa muy cerca del gran planeta Júpiter y logra fotografiar tanto su atmósfera como tres de sus satélites: Europa, Ganímedes y Calisto).
¿Qué características tiene la nave Pioneer 10?
La construcción de la nave Pioneer 10 estuvo a cargo de TRW, S.A., de Redondo Beach, California, y su lanzamiento se produjo el 2 de marzo de 1972 en un cohete de tres etapas llamado ‘Atlas Centaur.’
La sonda es de aluminio y pesa 258 kg en el despegue, con 28 kg de propelente. Su parte central consiste en un anillo hexagonal de 71 cm de ancho y 25,5 cm de altura en el que se encuentran tanto el sistema de radio como la computadora y grabadora, las baterías, y cables y demás accesorios.
La nave tiene además una antena parabólica de 2,74 m para las comunicaciones con la Tierra, que lamentablemente cesaron hace ya mucho tiempo.
Su fuente energética se compone de cuatro generadores termoeléctricos de radioisótopos (RTG) de dióxido de plutonio.
El equipamiento propiamente científico incluye detectores de meteoritos, una cámara, un radiómetro, un fotómetro, un detector de rayos cósmicos, un analizador de plasma y un magnetómetro.
Pero probablemente la carga más interesante es la placa que en mensaje simbólico pretende informar a cualquier ser inteligente extraterrestre sobre las características de la Tierra y sus habitantes humanos. Se trata de algo así como una botella lanzada al mar, que es en este caso el cosmos.
La placa es de aluminio bañado en oro, metal noble de gran resistencia a los posibles ataques químicos.
¿Cómo es esa placa con un mensaje interestelar?
En la placa aparece el dibujo de la propia sonda como indicador del tamaño real de las figuras humanas que aparecen por delante, representadas en la misma escala. Las figuras representan a un hombre y una mujer.
Al pie de la placa hay un esquema del sistema solar, con los planetas ordenados según su distancia respecto al Sol y se señala en esa secuencia planetaria cuál ha sido la ruta inicial de la Pioneer.
En notaciones científicas que pueden o no resultar descifrables para eventuales seres inteligentes de otros mundos, aparecen referencias a la posición relativa de púlsares cercanos a nuestro sistema solar, y una representación en sistema binario, del spin de una molécula de hidrógeno, que fue elegido para figurar en la placa porque es el elemento más común en el universo y podría ser reconocido en otras civilizaciones.
El diseño de la placa se debe a los astrónomos estadounidenses Carl Sagan y Frank Drake, mientras que el dibujo mismo fue realizado por Linda Salzman Sagan.
¿Cómo se desarrolló el viaje?
Si bien se había programado originalmente una misión de solamente 21 meses, la Pioneer 10 envió información por más de 30 años.
El Pioneer 10 alcanzó una velocidad de casi 52.150 km por hora (32,400 millas/h), lo que le permitió salir de la influencia de la Tierra, para cruzar la órbita de la luna en 11 horas, y la de Marte, en apenas 12 semanas.
El 15 de julio de 1972, la nave ingresó en el cinturón de asteroides, lo que fue una hazaña por primera vez alcanzada en la historia de la exploración espacial.
Fue luego de este logro que la nave se dirigió hacia Júpiter, donde en la fecha que conmemoramos obtuvo imágenes cercanas de ese planeta y tres de sus satélites. Fue la Pioneer 10 la que registró la traza de los cinturones gaseosos de radiación del planeta gigante, localizó su campo magnético, y estableció que Júpiter es predominantemente líquido.
En 1983, la nave fue el primer objeto hecho por la humanidad que pasó la órbita de Plutón, alejándose del Sistema Solar, luego de haber explorado las regiones exteriores del sistema solar, estudiado el viento solar, y los rayos cósmicos que entran a nuestra región de la Vía Láctea.
La misión científica de la Pioneer 10 teóricamente finalizó el 31 de marzo de 1997. Sin embargo, la nave ha seguido transmitiendo, aunque con una señal cada vez más débil, pero que pudo ser rastreada durante muchos años más por la Deep Space Network (DSN) de la NASA, como parte de un estudio tendiente a desarrollar mejores tecnologías de comunicación .
¿Qué pasó luego?
Después de más de 30 años, la última señal de la nave que pudo captarse en la Tierra, data del 22 de enero del 2003, ya que la fuente de poder nuclear del Pioneer 10 ha decaído, y carece de poder suficiente como para transmitir hacia la Tierra.
Antes de esa señal hubo tres contactos, todos muy débiles y ya sin telemetría. La última recepción con telemetría fue del 27 de abril de 2002.
Respecto al futuro, la Pioneer 10 continuará viajando silenciosamente por el espacio interestelar, en dirección a la estrella roja Aldebaran, de la constelación de Tauro, a aproximadamente 68 años luz de la tierra, aunque nunca sabremos si algo la detiene antes, o si alcanzará esa estrella, porque su velocidad, muy inferior a la de la luz, le demandaría más de 2 millones de años para llegar a la meta.
No sé ustedes, pero yo no creo que esté aquí para ese entonces, ;D
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: La imagen que ilustra el post es de Wikipedia
Una novedad con suspenso
Ya saben ustedes (y si no lo saben, ahora se enteran y me mandan regalo, ;D) que el 4 de octubre es mi cumpleaños. Y vengo a enterarme de que justo para esa fecha Cold Play me hará un regalo (bueno, no a mí sola, sino al mundo entero) poniendo a la venta el nuevo disco, sobre la luna, como el nombre lo indica.
Por ahora es todo lo que sé, pero una vez que lo conozca, tal vez, y sólo tal vez, encuentre allí un yacimiento de ideas para futuros posts en la etiqueta Cosmos.
Bueno, si no es el caso, al menos este anuncio vale para un post recreativo de viernes, que si no se relaciona con nuestra ciencia por el lado del conocimiento del Sistema Solar, al menos lo hace a través del cumple de una geóloga, que casualmente vengo a ser yo.
Los invito a esperar juntos esta nueva producción y ver qué podemos sacar de ella.
Un abrazo y hasta el próximo lunes con un post bien científico. Graciela.
Una teoría alternativa que es interesante conocer
¿De qué teoría se trata y cuándo se presentó?
Como alternativa interesante, y sin ser una aportación para nada reciente, existe una teoría que es sustentada por algunos geólogos, y es rechazada por muchos más, pero que una vez depurada de algunas presunciones no demostradas, aporta la posibilidad de reflexionar sobre datos de interés que me parece apropiado conversar con ustedes. Esta teoría fue presentada para su difusión, por el Geólogo Juan Carlos Terraza en el VIII Congreso Geológico Argentino que tuvo lugar en San Luis en 1981.
La presento pues, añadiendo luego las objeciones del caso, y rescatando los núcleos que merecen su lugar en el conocimiento vigente
¿Qué se pretende explicar con esta teoría?
Se trata de una teoría cosmogónica, y como tal, su intención es dar una explicación para el origen del Sistema Solar. La aceptación creciente de la hipótesis nebular hace que deje de ser válida para ese objetivo, no obstante lo cual, hay algunos puntos que merecen ser tenidos en cuenta por estar bien probados. Por ende, no la consideraremos como una teoría cosmogónica, sino que tomaremos de ella sólo algunos postulados que caben en un rompecabezas diferente al que originalmente pretendía conformar.
¿Cuáles son los puntos centrales de la teoría?
La teoría tiene tres postulados centrales. En primer lugar, se asume que todos los planetas se originaron en el sol, el cual los habría ido expulsando en ciclos sucesivos de máxima actividad. Si se toma en cuenta que de toda la masa del sistema, el 99% corresponde al sol, y el resto sólo suma alrededor de un 1%, no parece tan exagerado suponer esas expulsiones de materia al espacio, las cuales, además, habrían ocurrido a lo largo de millones de años. Si cada emisión de materia implica la creación de un planeta, es de esperar que éstos tengan edades decrecientes desde el más alejado (que se separó primero) hasta el más central, que correspondería al último de los desprendimientos hasta hoy acontecidos.
Asumido este punto, puede avanzarse hacia el segundo postulado: si el Sol está perdiendo masa, es obvio que su campo gravitacional disminuye, con lo cual, los planetas tienden a alejarse de él. Esto implica que los cuerpos fueron ocupando progresivamente lugares más distantes, lo que se relaciona con el punto anterior, pero además tiene otras connotaciones.
En efecto, según la Tercera Ley de Kepler, al hacerse las órbitas de los planetas más extensas, tienden a rotar con menos velocidad, y la duración del año, lógicamente se prolonga también; lo cual veremos en seguida que tiene demostración concreta.
El tercer postulado, indica que la propia Tierra se habría expandido como resultado de la pérdida de masa del Sol, con lo cual las atracciones gravitatorias externas e internas habrían debido alcanzar una nueva posición de equilibrio, que según esta teoría conduce a ese aumento del volumen planetario. Es en esencia la teoría de la expansión de la Tierra, de la que ya hemos hablado en otro post y cuyas objeciones hemos presentado allí, de modo que les aconsejo ir a leerlas ahora mismo.
¿Hay algunas pruebas de esas ideas? ¿Hay también objeciones a esas pruebas?
Para el primer postulado, algunas muestras obtenidas por sondas de diversas misiones espaciales han llegado a determinar composiciones y temperaturas que serían compatibles con los distintos grados de evolución que según esta teoría deberían tener los planetas, de haberse desprendido en diversos pulsos solares.
No obstante, puede señalarse que en la teoría nebular, el solo hecho de ocurrir las condensaciones a distintas distancias de la fuente de calor, podrían redundar en distintos tiempos de solidificación, y el resultado sería el mismo.
Para el segundo postulado, la prueba surge de los anillos de crecimiento de los corales, que según se sabe se producen según núcleos anuales que a su vez pueden dividirse en unidades diarias. Ese conteo arroja la información de que hace unos 400 Ma, los años habrían tenido una duración de doscientos días. Esto es compatible con una órbita más corta, es decir que podría haber estado la Tierra más próxima al Sol. Esto podría resultar también de días mucho más largos, pero eso es contrario a la expresión de la Tercera ley que consigné más arriba.
Respecto al tercer postulado, se relaciona con la Teoría de la expansión de la Tierra, de la que ya hemos hablado en profundidad en el post que les recomiendo ir a leer.
¿Qué se rechaza y qué se rescata de ella?
Si bien los tres postulados pueden jugar algún papel en la historia de la Tierra, no alcanzan a superar las comprobaciones de la teoría nebular, ni resultan incompatibles con ella, cuando se los toma como simples partes de un cuadro mucho mayor y mejor estructurado.
En otras palabras, si bien esos hechos no se desmienten, no se entienden en conjunto como una teoría cosmogónica, ya que esencialmente la pérdida de masa solar no alcanza para explicar toda la materia constituyente del Sistema, como sí lo hace una nebulosa preexistente.
Hay hechos probados, pero se interpretan de otra manera. Es como si, por ejemplo, mi actividad literaria, demostrable y demostrada fuera entendida como la explicación de mi carrera profesional geológica. Ése sería un error, ya que si bien ambas actividades coexisten, no es ninguna de ellas consecuencia de la otra. El Sistema Solar presenta estas características, pero no es el resultado de ellas.
No obstante, hay cosas muy interesantes. Por ejemplo, si se piensa en esa secuencia de edades de los planetas, mirar hacia Venus (teóricamente más joven) nos daría pistas sobre el pasado de la Tierra; mientras que observar a Marte nos permitiría atisbar en el futuro. Todo es pues útil, aunque siempre se deba cuestionar cada teoría, sin tomarla como una doctrina o un dogma.
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
La primera astrónoma de la historia: Cecilia Payne-Gaposchkin
Si bien la Astronomía no es parte integrante de la Geología, es una ciencia que los geólogos no podemos ignorar porque la Tierra, que es nuestro objeto material de estudio, forma parte de ese cosmos acerca del cual es imprescindible conocer al menos los fundamentos, y de una manera sólida. Por ello, es que he elegido hoy este homenaje a la primera mujer que se reconoce mundialemnte como astrónoma en la historia de la ciencia.
¿Por qué se reconoce a Cecilia Payne -Gaposchkin como la primera astrónoma de la historia?
Porque su vida se desarrolló en una época en que las puertas de la ciencia no estaban del todo abiertas para las mujeres, a quienes muchas veces se consideraba como excelentes ayudantes por su dedicación, minuciosidad y prolijidad; pero a las que muy difícilmente se les permitía ejercer roles de mayor protagonismo.
Cuando se produjo su reconocimiento ya el Observatorio de la Universidad de Harvard desde hacía décadas contaba con esas mujeres que aun dedicando su vida al estudio de las estrellas, y teniendo estudios cursados, no alcanzaban el cargo que realmente merecían. Entre las pioneras podemos mencionar a Annie Jump Cannon, Williamina Fleming, Antonia Maury y Henrietta Leavitt, que en los corrillos universitarios eran conocidas como «el harén de Pickering», ya que era éste quien las seleccionaba y contrataba.
A ese selecto grupo pertenecía Cecilia, y se abocó desde 1923 a realizar su tesis doctoral, tarea en la que la había precedido un año antes Adelaide Ames. Al terminar su tesis doctoral titulada “Atmósferas estelares, una contribución al estudio de observación de las altas temperaturas en las capas inversoras de las estrellas”, en 1925, su talento no pudo menos que ser finalmente reconocido, según veremos más abajo.
¿Qué se sabe de su vida?
Cecilia Helena Payne nació el 10 de mayo en 1900 en Inglaterra, en la ciudad de Wendover. Sus padres eran Edward John Payne, abogado, músico e historiador, que falleció cuando Cecilia contaba apenas con cuatro años de edad; y Emma Leonora Pertz, quien fiel a su educación prusiana procuró para sus tres hijos, la mejor educación posible.
Cecilia en particular estudió en el Saint Paul’s Girls School y a los diecinueve años ganó una beca para proseguir sus estudios en el Newnham College, que dependía de la Universidad de Cambridge. Por ese entonces – y hasta 1948- las mujeres que estudiaban allí no podían acceder oficialmente a un título, pese a lo cual, ella terminó su formación en Botánica, Física y Química.
Sin embargo, su verdadera y definitiva vocación fue despertada por una conferencia del astrofísico Arthur Eddington, lo que le hizo pensar que en Inglaterra sólo podía aspirar a ser profesora en algún colegio femenino, y eso no se correspondía con su sueño de ser investigadora. Fue por ese motivo que en 1923 se marchó a los Estados Unidos donde las mujeres comenzaban a abrir un camino algo menos limitado, aunque en roles todavía subalternos.
Su traslado fue auspiciado por un programa de Harlow Shapley, y como ya dije más arriba, allí presentó su tesis que algunos científicos de ese tiempo consideraron como la tesis doctoral más brillante sobre astronomía. En ella, Cecilia estableció que las estrellas estaban formadas en un amplio porcentaje por hidrógeno, elemento que empezó a mencionarse como el más abundante de todo el universo. En parte por ese prestigio, ya en 1931 recibió la nacionalidad norteamericana, y dos años después, en un viaje por Europa conoció al astrofísico ruso Sergei I. Gaposchkin, con quien habría de casarse en 1934 y con quien tuvo tres hijos. Cecilia no siguió la tradición norteamericana de asumir el apellido del marido en lugar del propio sino que conservó el suyo y le adicionó el de su cónyuge y desde entonces pasaría a llamarse Cecilia Payne-Gaposchkin.
Fue recién en 1938 que se la reconoció oficialmente en Harvard como astrónoma titulada. En 1956 fue nombrada profesora titular en la Facultad de Artes y Ciencias, para ser poco después responsable de la Cátedra del Departamento de Astronomía, que fue por primera vez dirigida por una mujer.
En 1966 se jubiló de la enseñanza pero continuó trabajando como investigadora del Observatorio Astrofísico Smithsonian. Falleció el 7 de diciembre de 1979, en Massachussets, después de acumular logros que nada tenían que ver con una «ley de cupos», sino solamente con su capacidad, esfuerzo y talento.
¿Cuáles fueron sus principales contribuciones científicas?
Ya en su tesis, mencionada más arriba, y cuyo título original en inglés era «Stellar Atmospheres: a contribution to the observational study of high temperature in the reversing layers of the stars», marcó un hito al señalar la composición estelar dominantemente de hidrógeno y helio, lo que contradecía la opinión reinante en esa época según la cual, las estrellas no diferían de la Tierra en su composición.
Para establecer sus conclusiones, Cecilia utilizó la ecuación de ionización del físico indio Megnad Saha, que también orbitaba algo alejado del centro de los investigadores más reconocidos, en buena medida por su nacionalidad.
Además de esa tesis que contribuyó a cambiar todo un paradigma, escribió varios libros tales como: The stars of high luminosity; Variable stars; Variable stars and galactic structure, y The galactic novae, de 1957.
¿Qué premios y homenajes se le dedicaron?
A lo largo de su carrera científica obtuvo numerosos y merecidos reconocimientos, tales como el premio Henry Norris Russell, Prize de la American Astronomical Society, recibido en 1976.
Por otra parte, el Asteroide 2039 recibió el nombre de Payne-Gaposchkin.
Pero también cabe mencionar que todavía siendo estudiante, en 1923, su brillante desempeño le valió ser elegida miembro de la Royal Astronomical Society, y más adelante formó parte de otras numerosas y prestigiosas asociaciones entre las que cabe mencionar la American Astronomical Society (1924), y la American Philosophical Society (1936), la American Academy of Arts and Sciences (1943).
Recibió el premio Annie Jump Cannon, del que fue la primera ganadora en 1934, el Premio al mérito del Radcliffe College en 1952, y la Rittenhouse Medal, del Franklin Institute en 1961.
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela. P.S.: La imagen que ilustra el post es de este sitio.
Una interesante efeméride
Hace apenas un par de días se cumplieron 18 años de un descubrimiento importante, lo que servirá de excusa para salirnos un poco de lo estrictamente geológico, aunque viene al caso, porque a los geólogos nos interesa el contexto del planeta que nos desvela.
¿De qué efeméride hablamos?
El 9 de marzo de 2006, la sonda Casini descubre evidencias de la presencia de agua en estado líquido en Enceladus, uno de los satélites de Saturno.
La sonda Cassini es el resultado de un proyecto conjunto en el que participan la NASA, la Agencia Espacial Europea (ESA) y la italiana (ASI), y se encontraba orbitando Saturno desde 2004.
¿Qué sabemos de Enceladus?
Enceladus, a veces castellanizado como Encélado es por orden de tamaños decrecientes, el sexto satélite de Saturno, con un diámetro muy poco superior a los 500 km.
Se lo conoce desde un tiempo relativamente reciente, ya que fue descubierto el 28 de agosto de 1789 por William Herschel, al aplicar la ley de Titius Bode de la que ya hemos hablado.
La temperatura media de su superficie ronda los -190°C, por lo cual está cubierto por una capa de hielo reciente que refleja casi toda la luz solar incidente, lo que mantiene las condiciones de frío extremo.
Se han observado en él toda una variedad de paisajes de diferentes edades, topografías y seguramente orígenes.
¿Hubo indicios previos a este descubrimiento?
Ya en los años 80 las sondas Voyager pasaron muy cerca del satélite, despertando interés por la presencia de rasgos relacionables con una dinámica hídrica.
Entre 2004 y 2005, la sonda Cassini comenzó una serie de aproximaciones que revelaron nuevos detalles, tales como la presencia de criovolcanes próximos al polo sur del satélite.
En marzo del 2006 pudo establecerse que existen geoformas similares a géiseres, que arrojan emisiones de vapor de agua, algunas otras sustancias volátiles, y también material sólido compuesto en parte por cristales de cloruro de sodio y partículas de hielo.
Ese hielo es en parte responsable de los anillos que circundan a Saturno, pues cuando las emisiones son muy violentas, las partículas heladas escapan a mayor distancia del centro del campo gravitacional, y permanecen orbitando en el espacio exterior del planeta.
¿Cómo se prueba la existencia de agua en Enceladus?
Al aproximarse la sonda Cassini a Saturno, se estableció que el sistema del planeta y sus lunas contiene una gran cantidad de átomos de oxígeno libre. En un primer momento el fenómeno resultó desconcertante, hasta que se descubrió que Enceladus emite gran cantidad de moléculas de agua que se disocian luego en oxígeno e hidrógeno.
Pero lo más interesante es la presencia de iones negativos de agua en el satélite, es decir de átomos con más electrones que protones.
Esos iones sólo se han descubierto hasta ahora en la Tierra, en Titán, (el satélite más grande de Saturno), en algunos cometas, y en Enceladus. En la Tierra se atribuye la existencia de estos iones negativos a los violentos movimientos del agua en los océanos. Por extensión se asume que debajo de la superficie de Enceladus podría existir un océano que constituiría una capa entre el hielo de la superficie y el núcleo rocoso, cuyo espesor se calcula en unos diez kilómetros.
¿Qué se puede agregar?
Si bien esto también sucede en otros satélites, en este caso, dado el tamaño del cuerpo, las capas de agua líquida podrían estar a unas pocas decenas de metros bajo la superficie.
En abril de 2017 la NASA confirmó también la existencia de géiseres y fumarolas que expulsan vapor de agua acompañado de elementos químicos que harían factible la posibilidad de vida microbiana.
Si se analiza la confluencia de agua líquida en abundancia, una fuente de energía, y la presencia de moléculas complejas que incluyen átomos carbono en largas cadenas, la existencia o generación de alguna forma de vida es una posibilidad que se está teniendo en cuenta.
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela. P.S.: La imagen que ilustra el post es de este sitio.