Entradas con la etiqueta ‘Sismos’
El sismo en Japón del 13 de enero de 2025

Hoy nos ha sorprendido la noticia de un sismo en Japón, y hablaremos un poco sobre él.
¿Qué reporta la prensa al respecto?
Lo primero que debemos agradecer es que no se han registrado víctimas personales ni daños de gran importancia, por razones que analizamos más abajo. No obstante se sintió la fuerte sacudida y se emitió una alerta por tsunami, de lo cual también hablaremos luego.
Por lo demás, se informa que tuvo lugar en las proximidades de Miyazaki, el día 13 de enero de 2025 (hoy) a las 12:19:32 (UTC).
¿Qué características técnicas tuvo?
Según lo que informa el USGS, la magnitud fue de 6.8, con epicentro unos 18 km al SE de Miyazaki, Japón, según coordenadas 31.806° N y 131.565° E. El hipocentro se calcula a 36 km de profundidad.
¿Cuál es el contexto geológico que explica esa alta sismicidad en Japón?
Japón y su territorio insular se encuentran emplazados en las fronteras de varias placas tectónicas, tales como la de Filipinas, del Pacífico, la Eurasiática y la Norteamericana. No es pues de extrañar que se trate de una de las zonas más activas geológicamente, y se sacuda sísmicamente con cierta regularidad. También la pequeña placa de Sonda influye en el contexto regional.
Una característica muy peculiar es que en la zona en cuestión casi todas las placas convergen, como es el caso de la placa Pacífica que subduce al sur de Japón; mientras que al oeste convergen también la placa de Filipinas con la de Sonda, por mencionar ejemplos.
Todo eso produce gran actividad tanto tectónica como volcánica. Y por supuesto es alta la ocurrencia de tsunamis también.
¿Por qué, sin embargo, normalmente se registran pocos daños y víctimas?
Esencialmente porque la vulnerabilidad es baja, debido a la conjunción de edificaciones sismorresistentes, educación para la contingencia, y una cultura donde las indicaciones que van emitiendo las autoridades se cumplen a pie juntillas. Les sugiero que sigan todos los links que he incluido aquí, porque no voy a repetir temas ya tratados en detalle con anterioridad.
¿Por qué se emitió una alerta por tsunami?
Siendo la zona mayormente insular, la alerta es una consecuencia lógica, y forma parte de los protocolos de prevención. De hecho, acabo de escuchar que ya hubo pequeñas manifestaciones asimilables a tsunamis poco intensos.
¿Qué sigue ahora?
Como siempre lo indico, habrá que estar conscientes de que ahora seguirán réplicas de menos magnitud hasta que las placas encuentren una nueva posición de equilibrio. No cabe suponer que sean de gran magnitud porque ya la energía acumulada ha sido liberada en gran medida. Las autoridades de las costas al otro lado del Pacífico deberán monitorear la situación por las razones que expliqué ya en este post, que les recomiendo ir a leer.
Ahora, antes de despedirme, les recuerdo que hubo también un sismo recientemente en Nepal, y que pueden leer algunas explicaciones generales en este post, aunque no lo haya escrito ahora, sino hace muchos años con motivo de otro evento.
Un abrazo y hasta el próximo miércoles, con un post informativo. Graciela.
Si este post les ha gustado como para compartirlo, por favor mencionen la fuente porque los contenidos del blog están protegidos con IBSN 04-10-1952-01.
La imagen que ilustra el post es del Servicio Geológico de los Estados Unidos.
Sigue la Tectónica de placas. Hoy límites convergentes entre placas de distinto carácter

Seguimos avanzando paso a paso en el conocimiento del actual paradigma vigente en Geología: la Tectónica de placas, o como yo prefiero llamarla, Tectónica Global.
Ya hemos adelantado muchos conceptos previos, y nociones generales. También hemos visto los tipos de contactos entre las placas, y hablamos de los bordes divergentes y de los convergentes entre dos placas oceánicas. Hoy veremos otro de esos tipos de bordes: un contacto convergente entre placas de distinto carácter.
¿Qué pasa cuando las placas involucradas son de distinto carácter?
Según ya he señalado otras veces, las placas continentales y oceánicas tienen diferente composición petrológica y química dominante, de modo que cuando ambas se enfrentan en un desplazamiento convergente, sólo una de ellas puede hundirse por su mayor densidad, y es la oceánica. La placa continental por sus propias características se resiste a descender. Es decir que, como se ve el gráfico, lo que allí llaman placa inferior, puesto que es la que baja en dirección al manto, es siempre la oceánica. Como también es notable en el dibujo, la continental permanece en superficie, por lo cual allí la llaman superior, aunque no sea el término habitual.
En definitiva hay una subducción de la placa oceánica que porta materiales que cambiarán de estado, razón por la cual se considera que este tipo de contacto es destructivo, como expliqué en un post anterior.
¿Qué efectos tienen lugar en profundidad?
Ya sabiendo que la placa que desciende es la oceánica, cabe preguntarse qué va a sucederle en ese nuevo entorno en el que se va introduciendo.
Es algo obvio que la temperatura en profundidad estará lo suficientemente aumentada como para que se inicie un proceso de fusión de aquellos materiales que se encontraban en equilibrio en entornos mucho más fríos.
Por otra parte, la roca que presenta contenido de agua (como es normal en los fondos oceánicos) y es sometida a presión (también presente a grandes profundidades) presenta un punto de fusión más bajo que la roca seca. Esto lo he explicado también antes.
Por supuesto, este material fundido y caliente no es otra cosa que magma, que tiende a moverse hacia arriba, según el sentido de descenso de la presión confinante,
En determinadas situaciones, ese magma alcanza la superficie en el interior del continente, pero próximo al contacto subductivo, generando efusiones volcánicas, según veremos un poco más abajo.
En otros casos, el magma no llega a completar su ascenso sino que solidifica en profundidad, generando un engrosamiento cortical con rocas de carácter generalmente básico por su procedencia desde materiales del fondo oceánico. Ahora bien, como las placas en descenso también son portadoras de sedimentos que llegaron a los fondos marinos desde los continentes aledaños, tampoco esa composición es una regla de oro y el resuktado final presenta alguna variabilidad espacial.
¿Qué fenómenos se observan en superficie?
Analicemos ahora los efectos que pueden observarse en la placa que permaneció en la superficie, vale decir veamos qué pasa en el continente.

Si bien en principio el magma en ascenso es de tipo basáltico, suele ocurrir algo de asimilación al ponerse en contacto con las rocas del lugar, dando por resultado un material más enriquecido en SiO2 (sílice) tal como ocurre con las rocas de composición andesítica.
Este tipo de magmas, pueden provocar erupciones explosivas, que liberan grandes columnas de cenizas y gases volcánicos, tal como sucedió en 1980 en el volcán Santa Helena.
En la generalidad de las situaciones de subducción de una placa de litósfera oceánica hacia el manto, el proceso genera la formación de un arco magmático equivalente en cierta medida a los arcos de islas de que hablamos en otro post.
Ese arco, junto con el engrosamiento cortical mencionado más arriba, instala una cadena montañosa, conocida como orógeno que se manifiesta linealmente por varios miles de kilómetros de largo, y algunos cientos de ancho. Un claro ejemplo de orógeno es la cordillera de los Andes.
Los ambientes orogénicos implican altas temperaturas y presiones, generadoras de metamorfismo sobre las rocas preexistentes, además de importante actividad sísmica, esfuerzos compresivos tangenciales a la superficie del geoide, y ascenso de materiales ígneos, que pueden formar tanto cuerpos plutónicos a cierta profundidad como dar lugar a intenso vulcanismo.
Dado el caracter siálico de la corteza continental, es en estas situaciones donde pueden formarse los granitos y granodioritas y sus equivalentes volcánicos, todos ellos rocas ígneas de colores claros y densidad relativamente baja, con alto contenido de silicio y aluminio.
En la figura que ilustra el post puede verse la sección transversal de un orógeno con los ambientes tectónicos asociados.
En el arco magmático que mencionamos arriba, pueden distinguirse tres zonas: antearco, arco volcánico propiamente dicho o frente volcánico y retroarco.
El antearco se extiende desde la fosa oceánica generada por la subducción de la placa oceánica, hasta la porción continental donde aparecen las primeras manifestaciones volcánicas, conocido como arco o frente volcánico. La fosa normalmente se sitúa más allá del relieve continental emergido, a distancias variables del límite costero.
El retroarco se encuentra hacia adentro del continente, y se lo considera desde donde finalizan las manifestaciones volcánicas hasta el límite del orógeno.
Así como el orógeno andino se genera esencialmente por la subducción de la placa de Nazca por debajo del continente sudamericano, su continuación hacia el norte, que se manifiesta en la cordillera Cascade, es el resultado de la subducción de la placa de Juan de Fuca bajo la Norteamericana.
¿Se puede agregar algo más?
¿Algo? No, algo no, muuuucho más, pero todo eso será motivo de numerosos posts, ya que todo el paradigma está sujeto a revisiones continuas, y aparecen debates, dudas y discusiones que nos darán mil motivos de encuentro, aun después de que hayamos terminado de conocer las informaciones básicas, que todavía están también lejos de completarse. En otras palabras, no sueñen con que ya conocen todo lo necesario sobre la tectónica global.
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela. P.S.: La imagen que ilustra el post es de este sitio. La otra figura es tomada de Varela, Ricardo 2014. Manual de Geología. Miscelánea 21 del Instituto Miguel Lillo ISSN 1514 – 4836, de donde tomé también alguna información.
Más de la Tectónica de placas

Como este tema da muchísimo para hablar, lo venimos desarrollando paso a paso, y hoy vamos a avanzar un poquito sobre otra de las formas posibles de contacto entre placas adyacentes.
En este caso serán bordes convergentes o de destrucción. Pero como ya hemos visto en otro post, este tipo de contactos puede presentarse de tres formas diferentes según el carácter de las placas involucradas a uno y otro lado de la línea de convergencia.
Hoy hablaremos del caso particular de contacto entre dos placas oceánicas.
¿Qué característica general comparten los contactos convergentes?
Como ya lo indica el nombre, este tipo de contactos implica la «destrucción» de material litosférico, que inicia un proceso complejo del que hablaremos en seguida, pero que básicamente compensa la «creación» de material que tiene lugar en los bordes divergentes de los que ya hemos hablado en otro post.
Este nuevo paradigma logró resolver el problema que hemos señalado también en otro momento, de explicar la relativa invariabilidad en la extensión de la superficie terrestre, pese a ese continuo surgimiento de nuevos materiales en las dorsales oceánicas.
En resumen, el material que en un lado se suma, en otra parte se consume en un ciclo que algunos asimilan a una cinta transportadora sin fin. Algunas aclaraciones al respecto ya hemos adelantado también antes.
¿Qué pasa cuando las dos placas convergentes son oceánicas?
Comencemos por recordar algo que ya conocemos: la composición dominantemente de Silicio y Magnesio de las rocas de los fondos oceánicos. Hablamos pues de materiales densos que pueden por ende volver a hundirse en dirección al manto subyacente.
Así es que cuando convergen dos placas oceánicas, una de ellas desciende por debajo de la otra, generando lo que se denomina «subducción».
Cabe preguntarse cuál de ambas permanece en superficie y cuál se hunde en cambio hacia el manto. Esto depende de la densidad y la velocidad fundamentalmente. Si hay diferencias litológicas desciende la más densa- que generalmente es también la más antigua- por debajo de la más ligera. En caso de haber escasas diferencias en ese aspecto, es la que se mueve con más velocidad la que se subduce.
El ingreso hacia el manto se produce según un cierto ángulo que es más empinado cuanto mayor es la velocidad de descenso, y que define un plano teórico a lo largo del cual se manifiesta mayor densidad de eventos sísmicos y que se conoce como Zona de Benioff, de la cual hablaré en un post específico porque es un tema muy jugoso.
A su vez, cuanto más bajo es el ángulo de descenso, por más extensión horizontal se notan los efectos de la subducción, tal como ya expliqué en otra oportunidad.
¿Qué efectos tienen lugar en profundidad?
Ya dijimos que la placa oceánica que subduce va ingresando según un cierto ángulo- tal como se ve en la figura- hasta alcanzar en algún momento la astenósfera o mayores profundidades mantélicas.
Por supuesto, una vez que esa corteza oceánica, que además es portadora de los sedimentos que se han ido depositando en los fondos marinos, llega a cierta profundidad se encuentra con un entorno de temperaturas en ascenso, tal como les expliqué en otro post.
Eventualmente ese aumento de temperatura será suficiente para provocar fusión en el material en descenso. A este efecto se suma el agua sobrecalentada, que por la misma presión a que la mayor profundidad somete a la placa en descenso, es expulsada y asciende hasta provocar también fusión en la roca de la porción sobreyacente del manto.
En este contexto, se inician procesos de efusión y generarión de volcanes desde el propio fondo oceánico. Ya veremos más abajo que algunos volcanes llegan a emerger, pero sigamos ahora con los efectos en profundidad.
Si observan el esquema que ilustra el post, verán que la placa que permanece en superficie, es en cierta medida arrastrada hacia abajo en su borde por la placa subducente, lo cual genera un espacio negativo del fondo oceánico que se conoce como fosa, que puede alcanzar grandes profundidades, y se sitúa a cierta distancia de los volcanes submarinos.
En definitiva, todo el sistema se conforma con: una placa en subducción, una placa que permanece emergida (ambas oceánicas), una fosa o complejo de fosas, y un alineamiento de volcanes submarinos que pueden o no alcanzar la superficie.
¿Cómo se manifiesta en superficie el contacto subductivo entre dos placas oceánicas?
Por supuesto, hay una continuidad entre los fenómenos profundos y su manifestación superficial, de modo que dividirlos aquí es bastante artificial y sólo sirve para ordenar las explicaciones, ya que todo forma parte del mismo sistema complejo.
Esas efusiones en el fondo oceánico, van construyendo en algunos sitios estructuras volcánicas que conforman verdaderas cadenas, algunos de cuyos picos emergen como islas. Dichas islas suelen estar separadas entre sí por algunas decenas de kilómetros, y las cadenas que constituyen pueden abarcar centenares de kilómetros de ancho.
Debido a la forma que afectan estas sucesiones de islas, reciben la denominación de «arco de islas volcánicas», o sencillamente «arco de islas». Su posición es normalmente próxima a la fosa que forma parte del mismo sistema. Así es que las fosas más profundas, como las de Mariana y Tonga tienen sus correspondientes arcos isla homónimos.
Casi todos los arcos de islas están en el Pacífico occidental, donde la corteza que subduce es relativamente antigua y densa, lo que le permite descender fácilmente en el manto, con un ángulo de descenso muy elevado, que llega a aproximarse a los 90 grados. Ese alto ángulo hace menos habitual la sismicidad, ya que la energía se disipa en el descenso más expedito.
En el Océano Atlántico sólo hay dos arcos de islas volcánicas: el de las Antillas Menores adyacente al mar Caribe, y el de las Sandwich del Sur.
En cuanto a las fosas mismas se contabilizan veinte, la mayoría en los bordes de la cuenca del Pacífico, que presentan una longitud de hasta 4.000 km, y un ancho de aproximadamente 100.
¿Se puede agregar algo más?
¿Algo? Mucho, en realidad, por lo que habrá otros muchos posts en los que iré revelando más detalles, matices, objeciones, discrepancias, etc. etc. pero aquí es interesante apuntar un par de detalles sobre la litología.
En general puede decirse que las rocas resultantes del vulcanismo en los fondos oceánicos tiende a presentar bajo contenido de sílice, ya que procede de los materiales fundidos de placas simaicas, con lo que las litologías son básicas, o eventualmente mesosilíceas si se va produciendo algún fenómeno de diferenciación magmática. Tampoco puede desestimarse una petrología más compleja si hay asimilación de materiales del manto sobreyacente y de los sedimentos que descienden con la placa en subducción.
No podemos cerrar el tema de hoy sin hacer notar que dos placas oceánicas enfrentadas, una de las cuales subduce implican necesariamente un relativo «cierre» de la cuenca oceánica, con lo que se acorta la distancia entre el borde de una de las placas oceánicas (la pasiva) y el continente que se desplaza como «pasajero» de la que se subduce, en caso de existir, claro, ese eventual pasajero. Esto, en miles o millones de años cambiará el carácter del contacto, que puede en algún momento pasar a ser un contacto subductivo entre placa continental y océanica, y no ya entre dos placas oceánicas.
Cómo serán los procesos en esta nueva situación será motivo del próximo post sobre el tema» contactos entre placas». Aclaro que no será necesariamente la próxima semana porque no quiero convertir este diálogo nuestro en un libro de texto, sino en algo variado y que nos vaya sorprendiendo cada vez.
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela. P.S.: La imagen que ilustra el post es de este sitio.
¿Por qué se sienten de distinta manera los terremotos en distancias similares?

Empiezo contándoles que ayer hubo un sismo en las cercanías de Los Ángeles (USA), al que no voy sin embargo a referirme específicamente, porque no fue de los más grandes ni generó titulares en los diarios.
No obstante, sí me ha dado un tema de conversación con ustedes, y para introducirlo, les cuento el contexto.
Ayer me llamó el Pulpo, para contarme que estaba escuchando un podcast producido en California, cuando los que lo estaban transmitiendo comentaron que se acababa de sentir un temblor. Al intercambiar impresiones, todos lo habían experimentado de maneras diferentes, pese a estar aproximadamente a la misma distancia del epicentro. Por supuesto, el Pulpo-mi hijo- me «exigió» que explicara eso en el blog, y aquí estamos, poniendo manos a la obra.
¿Cuál es el alcance de este post?
Es muy importante aclarar que NO voy a referirme a los efectos reales de un sismo, sino a la manera en que éste es percibido por las personas en distintos lugares, todos equidistantes del epicentro. Es decir que aquí no hablaré de los lógicos cambios que se relacionan con la mayor o menor distancia a la zona donde se inicia la liberación de energía. Muy por el contrario, podríamos visualizar una circunferencia de un radio X, con centro en el sitio de ruptura, y comparar cómo se siente el mismo movimiento telúrico, a lo largo de esa línea.
La otra aclaración necesaria es que sobre los efectos reales de los sismos sobre los seres vivos, paisajes, bienes y construcciones, ya he subido sendos posts hace bastante tiempo, y a ellos los remito si eso es lo que quieren comprender.
Insisto: hoy hablamos de una forma de percibir el evento, no de sus efectos concretos.
¿Qué factores inciden en la percepción de un terremoto por parte de las personas?
Podríamos reunir las diferencias en las percepciones en cinco grandes grupos:
- Las condiciones personales de quienes se encuentran en la zona analizada.
- El momento de ocurrencia.
- Las condiciones del terreno geológico o litología.
- La situación topográfica.
- La vulnerabilidad.
¿Cómo inciden las condiciones personales?
Probablemente sea el factor más importante, porque estamos hablando precisamente de percepciones individuales. Así, es importante reconocer que hay personas particularmente sensibles a los movimientos telúricos, como las hay al sonido, a la luz, a los cambios de temperatura o a los aromas. Unos los sienten más atenuados y otros los sienten magnificados.
En general suele decirse que las personas muy estables reaccionan menos a los terremotos que las que tienen alteraciones nerviosas, o afecciones como el vértigo o la inestabilidad motriz.
También tiene importancia la historia previa de cada persona involucrada. Quien haya perdido afectos o bienes en un evento sísmico tendrá una reacción muy diferente a quien no ha experimentado tales pérdidas. A la inversa, quienes viven en zonas donde los sismos son habituales estarán más acostumbrados a ellos que quienes sólo están de paso y los viven por primera vez. En este último caso, las respuestas tenderán a ser más emocionales.
¿Cómo incide el factor temporal?
El horario de ocurrencia tiene que ver con la percepción resultante. En los horarios nocturnos o de descanso, quienes están en reposo lo sienten normalmente con mayor intensidad, precisamente porque tienen una referencia más estática (su propio cuerpo). Sin embargo puede también ocurrir exactamente lo opuesto, cuando se trata de personas en sueño muy profundo que pueden no llegar ni a enterarse del movimiento.
¿Cómo inciden las características del terreno?
Las ondas sísmicas se desplazan de diversas maneras y con velocidades diferentes según las características de los materiales que atraviesan.
De resultas de ello, los terremotos se perciben de manera distinta según el sitio de que se trate. En general, en los terrenos de roca firme y compacta, los efectos se moderan, entre otras cosas, porque las ondas pasan muy rápidamente dejando poco tiempo para sentir sus efectos.
En los suelos desagregados, los efectos pueden durar algunos segundos más, los que llegan a percibirse como una eternidad para los afectados.
Existen además efectos reales que las personas notan aunque ignoren de qué se trata, y es obvio que su sensación de incomodidad y angustia sea proporcional a esos efectos.
En terrenos arcillosos, puede haber una cierta licuefacción, que lleva al suelo a pasar a un estado casi fluido, con desplazamientos, inestabilidad, asentamientos diferenciales, etc. Todo esto hace que las personas tengan reacciones distintas.
Por otra parte los espacios muy modificados por el hombre llegan a tener comportamientos muy complejos y a veces hasta impredecibles, lo que hace que la población se vea sometida a otros estímulos y se diversifiquen las reacciones.
¿Cómo incide la topografía?
Las formas topográficas exhiben una gran variabilidad, de modo que es muy difícil resumir su posible influencia, pero podría generalizarse que a mayores alturas la distancia al hipocentro aumenta, de modo que las ondas recorren más espacio antes de alcanzar la superficie, y en el camino disipan algo de su energía. Es por eso que en las zonas bajas las personas tienden a sentirse más afectadas.
En casos particulares, como en las costas, donde pueden ocurrir tsunamis, la alarma naturalmente se incrementa con el riesgo.
¿Cómo incide la vulnerabilidad?
En un lejano post les he explicado lo que es el riesgo geológico, y allí he definido la vulnerabilidad. Les recomiendo ir a leer ese texto,pero les recuerdo que se relaciona con la fragilidad inducida por las construcciones, infraestructura, densidad poblacional, etc.
En este caso, es obvio que la gente se sentirá más asustada si hay pánico general inducido por la precariedad de las construcciones que comienzan a sacudirse y/o desplomarse. Y esa sensación crece con la cantidad de personas que pierden el control.
¿Qué más podemos agregar?
Nada de todo lo analizado puede considerarse de manera aislada, ya que la percepción del sismo se ve modificada por el complejo sistema que, al menos temporariamente, constituyen todos los elementos involucrados que se modifican entre sí.
Por último, les recuerdo que también pueden encontrar en el blog varios posts con recomendaciones para la eventualidad de un evento sísmico.
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
Los sismos de Turquía a partir de la segunda mitad del Siglo XX.

Investigando sismos luctuosos de las últimas décadas, encontré una gran densidad de acontecimientos en la zona de Turquía y se me ocurrió que valía la pena hacer un recuento de los de mayor magnitud y de sus víctimas, e intentar una explicación científica para tal estadística.
Pese a haber diversas alternativas para ordenarlos, me pareció que la que me permitiría jugar un poco más con algunas de las explicaciones es acomodarlos por fechas desde los eventos más recientes hacia los más antiguos, y seleccionar sólo los que superan la magnitud 5 de Richter, que pueden considerarse ya notables.
¿Cuáles son los sismos que afectaron a Turquía desde 1950 y que superan la magnitud 5 de Richter?
1. Sismo del 30-10-2020 de Samos, (Izmir), con profundidad 21 km, magnitud 7.0 y 117 muertes humanas. Explicado en detalle en este post.
2. Sismo del 25-06-2020 en Van a 10 km de profundidad 5.4 de magnitud y sin daños humanos.
3. Sismo del 24-01-2020 en las provincia de Elazig y Malatya , con profundidad de 12 km, magnitud 6.7 y 41 muertes.
4. 26-09-2019 en Estambul, con 10 km de profundidad, magnitud 5.7 y 1 pérdida de vida humana.
5. 24-04- 2018 sismo de Adiyaman con 10 km de profundidad y 5.2 magnitud Richter. Sin reporte de pérdidas de vidas.
6. 20-07-2017 en Bodrum y Datca; también afectando a Grecia. Profundidad 26 km y magnitud 6.6, con 2 muertes.
7. Sismo del 06-02-2017 en Canakkale a 4 km de profundidad, con magnitud 5.3 y sin daños en vidas humanas.
8. Sismo el 14-06-2012 de Sirnak hipocentro a 53 km de profundidad y magnitud 5.3 . Sin pérdidas de vidas humanas reportadas.
9. 10-06-2012 en Fethiye, con 16 km de profundidad, magnitud 6.1 y sin muertes reportadas.
10. Sismo del 09-11-2011 en Van a 33 km de profundidad y 5.7 de magnitud con 40 muertes.
11. 23-10-2011 en Ercis y Van a 22 km de profundidad y con magnitud 7.1. Se reportaron 604 muertes.
12. Evento del 08-03-2010 en la Provincia de Elazig a 34 km de profundidad y magnitud 6.1, con 51 muertos.
13. Terremoto del 26-12-2007 en Ankara, con profundidad de 10 km y magnitud 5.6, sin muertes.
14. Terremoto del 20-12-2007 en Yeniyapan, Abazlar y Suyuguzela 29 km de profundidad y magnitud 5.7. Sin muertos.
15. Sismo del 21-02-2007 en Dogankoy, Puturge, y Sivrice a 29 km de profundidad y 5.7 de magnitud. Sin muertos.
16. Sismo del 20-10-2005 de Izmir a 4 km de profundidad y 5.9 de magnitud. Con 1 muerto.
17. 30-07-2005 Sismo en Bahcekaradalak, Sirapinar y Yeniyapanseyhli, profundidad no calculada y 5.3 de magnitud. Sin muertos.
18. Sismo del 14-03-2005 en la Provincia de Bingol, a 55 km de profundidad y 5.8 de magnitud. Sin muertos.
19. Sismo del 25-01-2005 en Hakkari con profundidad de 16 km, magnitud 5.9 y 2 muertes.
20. Evento del 20-12-2004 en Marmaris a 12 km de profundidad y 5.4 de magnitud. Sin muertos.
21. Terremoto del 11-08-2004 en Elazig y Sivrice a 26 km de profundidad y 5.7 de magnitud. 1 muerto.
22. Sismo del 04-08-2004 en Bodrum a 7 km de profundidad, 5.6 de magnitud y sin muertes.
23. Terremoto del 01-07-2004 en Dogubeyazit apenas a 9 km de la superficie, 5.1 de magnitud y 18 muertes.
24. 28-03-.2004 sismo en Askale, hipocentro a 10 km bajo la superficie, 5.6 de magnitud y sin muertes.
25. 25-03-2004 evento en Erzurum con hipocentro a 49 km de la superficie y 5.6 de magnitud. 10 muertes.
26. 01-05-2003 en Bingol con profundidad de apenas 4 km y magnitud 6.4. 177 muertos.
27. Con fecha 10-04-2003, sismo en Izmir y Seferihisar con profundidad de 15 km para el hipocentro, magnitud 5.7 y sin daños personales mortales.
28. 27-01-2003 en Saglamtas y Pulumur con profundidad de 23 km para el hipocentro, magnitud 6.1 y 1 muerto.
29. Sismo del 03-02-2002 en Afyon con profundidad de 28 km para el hipocentro, magnitud 6.5 y 44 muertos.
30. Evento del 25-06-2001 en Osmaniye a 46 km de profundidad de ruptura, 5.5 de magnitud y sin muertes.
31. El 15-12-.2000, sismo en Afyon-Bolvadin con profundidad de 47 km para el hipocentro, magnitud 6.0 y 6 muertes.
32. Terremoto del 06-06-2000 Cerkes, Cubuk y Orta con hipocentro a 49 km bajo la superficie y magnitud 6.0, con 2 muertos.
33. Sismo del 3-12-1999 en Goresken, Provincia de Erzurum a 54 km de profundidad, 5.7 de magnitud y 1 pérdida de vida humana.
34. Evento del 12-11-1999 en Bolu, Duzce, Kaynasli, Adapazari, Zonguldak con 19 km de profundidad, 7.2 de magnitud y 894 muertes.
35. Sismo del 11-11-1999 en Adapazari, Koceali y Golcuk con 25 km de profundidad y magnitud 5.7. 2 muertos.
36. Evento del 13-09-1999 en Adapazari,Goluck y Kocaeli con 28 km de profundidad y magnitud 5.8. 7 muertos.
37. Con fecha 31-08-1999 sismo en Izmit con 49 km de profundidad y magnitud 5.2. 1 muerte.
38. El mayor sismo de esta serie de años, acompañado de tsunami el 17-08-1999 en Estambul, Kocaeli y Sakarya a 39 km de profundidad, magnitud 7.6 y nada menos que 17.118 muertes registradas.
39. 27-06-1998 Sismo de Adana y Ceyhan a 52 km de profundidad, con magnitud 6.3 y 145 muertos.
40. Sismo del 1-10-1995 en Dinar y Evciler con ruptura a 16 km de profundidad, magnitud 6.4 y generando 95 muertos.
41. 13-03-1992 sismo de Erzincan con profundidad de 39 km y magnitud de 6.9. 653 muertes.
42. Evento del 18-07-1990 en Cameli y Denizli profundidad de 24 km y magnitud 5.1. No se reportaron muertes.
43. 11-10-1986 en Aydin, Denizli, Izmir y Manisa 10 km de profundidad y magnitud 5.5. No se reportaron muertes.
44. Sismo del 5-05-1986 en Dogansehir, Golbashi y Kapidere, a 38 km de profundidad y con magnitud 5.9. Se contabilizaron 15 muertes.
45. El 18-10-1984 en Senkaya a 24 km de profundidad y con magnitud 5.3. 3 muertes.
46. 18-09-1984 en Erzurum, Olur y Senkaya con registro (a confirmar) a sólo 1 km por debajo de la superficie con magnitud 6.4 y 3 muertes.
47. El día 30-10-1983 sismo de Erzurum, Kars, Khorasan, Pasinler y Narman con hipocentro a 27 km de profundidad, y magnitud 6.9. 1.342 muertes.
48. El 05-07-1983 al noroeste de Turquía, en Biga, Erdek, y Estambul con 27 km de profundidad y 6.1 de magnitud. 5 muertes,
49. Sismo del 24-11-1976 en Muradiye, 18 km de profundidad y magnitud 7.3. 5.000 muertos.
50. Evento del 29-04-1976 sólo se señala Turquía con 9 km de profundidad, magnitud 5.5 y 4 muertes.
51. Sismo del 06-09-1975 en Lice a 10 km de profundidad y 6.7 de magnitud. 2.311 muertes.
52. 27-03-1975 en Canakkale, Eceabat, Gelibolu y Lapseki con profundidad de 6 km y magnitud de 6.7. Sin pérdidas de vidas informadas.
53. el 1-02-1974 en Izmir a apenas 2 km de profundidad y 5.2 de magnitud. 2 muertes.
54. Evento del 22-05-1971 en Bingol a 58 km bajo la superficie y con magnitud 6.7. 1.000 muertes.
55. El 12-05-1971 en Burdur a 13 km bajo el suelo y con magnitud 5.9. Registradas 100 muertes
56. Sismo del 23-04-1970 en Demirci y Manisa sin datos de profundidad y magnitud 5.7. No se reportaron víctimas.
57. Evento del 28-03-1970 en Gediz a 23 km de profundidad y con magnitud 7.4. Hubo 1.086 muertos.
En los terremotos que siguen hacia atrás en el tiempo, sólo en muy pocos casos hay registros de profundidades calculadas, lo que tiene que ver con el estado por entonces casi incipiente del desarrollo de las metodologías y redes sísmicas de la región.
58. El 30-04-1969 en Demirci, Anatolia oeste y Estambul, sismo de magnitud 5.1, sin registro de víctimas.
59. Evento del 28-03-1969 en Alasehir, Sarigol y Kiraz, de magnitud 6.5 y causante de 53 muertes.
60. Sismo del 23-03-1969 en Demirci, Gordes y Sindirgi. Magnitud 5.6, sin víctimas.
61. El 24-09-1968 Epicentro no señalado de modo específico y magnitud 5.1. Se indicaron 2 muertes.
62. Sismo del 3-09-1968 en Bartin, Amasra y Cakraz con profundidad de 52 km y magnitud 6.6. 24 muertos.
63. Terremoto del 26-07-1967 en Tunceli con magnitud 6.2 y 97 víctimas.
64. Sismo del 22-07-1967 en Mudurnu y Adapazari, con magnitud 7.3 y 86 muertes.
65. Evento del 19-08-1966 en Varto con magnitud 6.8 y 2.394 muertes.
66. El 07-03-1966 sismo en Varto y Mus de magnitud 6.0 que provocó 10 muertes.
67. Evento del 6-10-1964 en Manyas, Bursa y Balikesir con magnitud 7.0 y 19 muertes.
68. 14-06-1964 evento en Malatya y Adiyaman, de magnitud 6.1, que causó 8 muertes.
69. Sismo del 18-09-1963 en Yalova (Cinarcik) con magnitud 6.1 y 1 víctima reconocida.
70. Terremoto del 04-09-1962 en Igdir con magnitud 5.5 y 1 víctima reconocida.
71. Sismo del 23-05-1961 en algún lugar no establecido de Turquía con magnitud 6.5 y ninguna víctima reconocida.
72. El 25-04-1959 evento en Koycegiz y Mugla con magnitud 6.3 y ninguna víctima reconocida.
73. Sismo del 26-05-1957 en Abant con magnitud 7.1 y 500 víctimas.
74. Terremoto del 25-04-1957 en Fethiye con magnitud 7.1 y 18 muertos.
75. Sismo del 24-04-1957 en algún lugar no establecido de Turquía con magnitud 6.9 y ninguna víctima reconocida.
76. El 20-02-1956 sismo en Eskisehir con magnitud 5.8 y 4 muertos.
77. Sismo del 16-07-1955 en Soke, y Aydin con magnitud 6.8 y 4 muertos.
78. Sismo del 18-03-1953 en Yenice, Onon a 11 km de profundidad, con magnitud 7.5 y 1.070 muertes.
79. Evento el 22-10-1952 en Ceyhan, con magnitud 5.0 y 20 muertes.
80. El 03-01-1952 en Pasinler (Hasankale) y Erzurum sismo de magnitud 6.0 que causó 103 muertes.
81. El día 13-08-1951 terremoto en Kursunlu, de magnitud 6.7 y causante de 50 muertes.
¿Qué explicación cabe a la gran cantidad de episodios?
Ya en el post que he linkeado más arriba, con relación al evento de octubre de 2020, les expliqué que la zona estaba afectada por los movimientos de dos placas mayores: la de África con movimiento hacia el norte y que subduce bajo la de Eurasia, También allí les dije que la presencia de placas menores hacía más compleja la situación. En efecto, se mueve con su propia velocidad y dirección hacia el oeste, la microplaca de Anatolia que al interactuar con las placas ya mencionadas aumenta la amenaza de fenómenos sísmicos en la región. Este mosaico de placas genera la zona de alta peligrosidad que circunda el Mediterráneo.
¿Qué explica la cantidad de pérdidas humanas en algunos de los eventos?
Si se observa el listado, hay una relación consistente entre los sismos de mayor magnitud y la cantidad de muertes acontecidas, siendo el de mayor registro el de 1999 en Estambul con más de 17.000 víctimas. Es importante recordar que en esa oportunidad hubo un tsunami posterior al evento principal y que es en buena medida el causante del elevado número de victimas.
Hay también una cierta tendencia al aumento de víctimas en los terremotos de hipocentro más somero, lo cual es también lógico y atribuible a la propia peligrosidad de los sismos, cosa que expliqué en el post que he linkeado más arriba en la palabra amenaza.
No obstante debe señalarse que hay también falta de datos de profundidad en casi todos los eventos más antiguos que 1970. Por otra parte, también se da el caso de que terremotos de menos magnitud y más profundos, en determinadas situaciones han generado mayor cantidad de víctimas que otros más someros y con más liberación de energía. Esto se relaciona con la vulnerabilidad, que también está explicado en ese mismo post que acabo de mencionar un poco más arriba. Por lo general la vulnerabilidad en estos casos de Turquía disminuye donde la población se hace más escasa y dispersa.
Y por último, al alejarnos en el tiempo, con cierta independencia de las magnitudes, y siempre que hay datos – porque a veces se carece de ellos- suele aumentar el número de víctimas probablemente en relación con la menor preparación de la población y sus autoridades para responder a la ocurrencia de los eventos y a la mayor precariedad de las construcciones. En ambos casos otra vez se trata de una respuesta a la vulnerabilidad.
En definitiva, todos los elementos que intervienen en el riesgo geológico se deben considerar juntos si se quiere comprender cabalmente la situación y establecer comparaciones científicamente válidas.
¿Puede agregarse algo más?
En los últimos siglos, más allá de los años considerados en el post, Turquía se ha visto afectada por al menos otros 3 terremotos de magnitud superior a 7. Ellos son los eventos de 1688, 1881 y 1883, de los que probablemente escriba un post en el futuro.
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela. P.S.: La imagen que ilustra el post es de este sitio