Entradas con la etiqueta ‘Tectónica’
Otro pasito en el conocimiento de Tectónica de Placas

Tomado de Khan (ver Bibliografía)
Así como en su momento les conté acerca de otra teoría (Deriva continental según Wegener) que resultó ser el gran antecedente del actual paradigma, hoy voy a agregar otra que también aportó lo suyo, y que fue junto con la anteriormente mencionada, reformulada de manera que respondiera al nuevo conocimiento, eliminando de ella los conceptos obsoletos y erróneos.
Se conservan no obstante suficientes elementos de esa vieja teoría como para que sea necesario conocerla. De hecho, más adelante volveremos a revisarla desde otros puntos de vista por la importancia de su aporte para explicar este sistema tan complejo.
Estoy hablando de la Teoría de Convección en el manto.
¿Qué pretendía originalmente explicar la teoría de Convección en el Manto?
Si bien hoy resuelve, en parte al menos, otra pregunta diferente, en el momento de su generación pretendía explicar por sí misma todo el mecanismo de generación de cadenas montañosas. No estaba muy equivocada, aunque requería los ajustes que veremos en parte hoy, y en parte cuando avancemos un poco más en la comprensión del modelo completo de la Tectónica de Placas.
¿Cuándo fue formulada por primera vez, y quién la expresó en su forma completa?
El germen de la teoría aparecía hace más de un siglo en trabajos desperdigados y casi siempre desechados en su origen mismo. No obstante, hacia los locos años 20 (Siglo XX) Vening Meinesz recopiló y organizó esas ideas dispersas, y formuló la teoría en su primera aproximación, intentando con ella explicar las anomalías gravimétricas que observaba durante sus viajes en submarino, por zonas próximas a fosas marginales de los arcos islas de India Oriental.
Él especulaba que en las zonas de convergencia de células convectivas adyacentes (ya lo vamos a ir aclarando, tranquilos), se producía un descenso de material, que llevaba hacia abajo algo del fondo cortical menos denso, al que se denominó tectógeno y que justificaba el déficit gravimétrico observado.
Ya más adelante, en 1939, Griggs llevó a cabo uno de los primeros experimentos de laboratorio que intentaron replicar un modelo de escala global. Es el que se ve en la figura que ilustra este post, y sobre él fundamentó su teoría Holmes.
Paso a contarles brevemente cómo funcionaba el experimento:
Por supuesto el experimento requirió varias aproximaciones previas, a los fines de ajustar un artefacto que reprodujera en escala, las relaciones de espesor y densidad relativas de la corteza superficial y el manto profundo.
Para ello utilizó en el ensayo final, un gran tanque en el que la corteza estaba representada por una mezcla de arena y aceite pesado. Las características del manto se reprodujeron con una mezcla vítrea y viscosa. Las corrientes convectivas (que defino más abajo) se representaron con grandes cilindros en rotación.
En este ensayo, se demostró que el material representativo de la corteza, descendía allí donde las células convectivas se enfrentan entre sí, generando una especie de raíz liviana que por su propia densidad tiende luego a volver a ascender, inclusive elevándose más que la superficie circundante.
Estos resultados fueron utilizados en la interpretación de Holmes que explicó la orogénesis como les cuento en seguida.
¿Qué postula la Convección en el manto?
La base misma de la teoría requiere que el material del manto tenga cierta movilidad, y si bien este tema será tratado en detalle en varios futuros posts, les adelanto que tal cosa es posible.
La causa de la movilización fue atribuida en este modelo de Holmes a las inohomogeneidades térmicas. Asumiendo que la zona más próxima al núcleo está más caliente, su tendencia es a dilatarse y perder por ende su densidad. Recuerden que la densidad es igual a la masa sobre el volumen, y en la dilatación éste crece, de modo que el cociente es menor, y por ende el material resulta menos denso. Por esa razón tiende a flotar, ascendiendo hacia zonas más frías donde recupera su densidad y vuelve a hundirse generando ciclos en los que las células convectivas fueron idealizadas como se ve en la figura de la izquierda, donde el movimiento del material está esquematizado en las flechas del dibujo.
Ahora observen este nuevo gráfico y relaciónenlo con el experimento ya mencionado. Vean cómo en los bordes de la figura, se genera la raíz (a la que se dio en llamar tectógeno en este modelo) allí donde convergen dos células convectivas, con movimientos enfrentados. Raíz que luego ascendería formando las cordilleras. En el centro del dibujo se ven en cambio células de movimiento opuesto que «tironean» el fondo cortical en direcciones divergentes, hasta romperlo, dejando tras de sí remanentes que en esta teoría daban cuenta de la presencia de islas y dorsales oceánicas.
¿Qué permanece de esta teoría en el seno de la Tectónica Global?
Como ya les adelanté más arriba, esta teoría no fue desechada totalmente, sino que se incorporó como parte del paradigma vigente, que implica un modelo mucho más amplio y complejo. En otras palabras, la tectónica de placas y la convección en el manto forman parte del mismo sistema, al que todavía vamos a agregar algunos otros aportes en nuevos encuentros.
Lo que aportó este subsistema se puede resumir como sigue:
- El flujo convectivo profundo existe, y es en gran medida la fuerza impulsora subyacente en el movimiento de las placas.
- Las placas oceánicas (más pesadas) son las que descienden en el proceso conocido como subducción y las que conducen los materiales enfriados, nuevamente hacia abajo.
- La rama ascendente de la convección, portadora de rocas calientes, normalmente fundidas, da lugar a las dorsales oceánicas, y las plumas calientes que generan arcos islas.
- Los movimientos de las placas terrestres, responden en definitiva a desigual distribución del calor en el interior de la Tierra, tal como preconizaba este modelo de la convección.
Por cierto restan todavía muchas incógnitas, y hay diversas opiniones al respecto, pero volveremos sobre ellas como corolario de la Tectónica Global, cuando tengamos las cosas bastante más claras.
Lo que de plano se rechaza es la explicación de las dorsales como remanentes de una corteza continental separada en dos por la tracción de las corrientes convectivas. Pero ya hablaremos también de eso.
Bibliografía consultada.
- Holmes A. 1952. Geología Física. Ed. Omega S. A. Barcelona. España. 512 págs.
- Khan, M.A. 1980. Geología Global. Editorial Paraninfo. Madrid. ISBN 84-283-1047-5. 202 págs.
- Tarbuck, E. J. y F. K. Lutgens.1999. «Ciencias de la Tierra». Prentice Hall, Madrid. 616 págs.
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: La imagen que ilustra el post es de Holmes (ver Bibliografía)
La figura 1 es de Khan, mencionado en bibliografía.
Las placas tectónicas.
El lunes pasado les pedí que repasaran algunos temas porque vamos a ir metiéndonos de lleno en la Tectónica Global o de placas. A ello vamos hoy, pero como les señalé el lunes, en caso de que no lo hayan hecho ya, les recomiendo ir a repasar esos tópicos previos antes de internarse en el de hoy.
¿Qué se entiende por Tectónica de placas?
Comencemos por decir que el término «Tectónica» alude al estudio de la deformación de los materiales terrestres, y de las estructuras resultantes de esa deformación.
Cuando se especifica «Tectónica de placas», ya se está hablando de esas estructuras y deformaciones a nivel de todo el planeta, por eso se la conoce también como «Tectónica Global», y constituye hoy el paradigma vigente que permite explicar la mayor parte de los hechos geológicos que se registran, tal como se señaló en uno de los posts que debían repasar.
En esencia, el modelo de tectónica de placas asume que la litósfera (lithos: piedra; sphere: esfera) se encuentra fragmentada en un cierto número de grandes placas, que sufren desplazamientos relativos, generan eventos geológicos de gran magnitud, y modifican continua pero lentamente su tamaño y forma.
Es importante señalar que esas placas se mueven como unidades coherentes en relación con todas las demás placas, de tal modo que los puntos situados sobre la misma placa conservan su distancia casi sin cambio alguno, mientras que la distancia entre sitios aposentados en placas diferentes cambia progresivamente.
Esto estaría indicando una relativa estabilidad en el interior de las placas, y una dinámica de cambios a veces dramáticos en los bordes y contactos entre ellas. No obstante, ya veremos en algunos posts futuros que hay también teorías enmarcadas en el modelo general que pueden explicar los eventos y deformaciones que acontecen en el interior de las placas, alejados de sus límites.
¿Cuántas y cuáles son las placas mayores en que se divide superficialmente la Tierra?
Lo primero que debo aclararles es que no hay acuerdo total entre todos los científicos con relación al número y nombre de las placas, ya que algunos consideran que algunas divisiones no están debidamente comprobadas. Lo que les presento a continuación es el esquema con mayor aceptación.
Según él, hay 7 placas mayores, 8 intermedias y 42 menores. La suma de las mayores e intermedias puede verse en la figura que ilustra el post.
Las siete placas principales o mayores son:
- Placa Norteamericana.
- Placa Sudamericana.
- Placa del Pacífico, que es la de mayor tamaño.
- Placa Africana.
- Placa Euroasiática.
- Placa Australiana.
- Placa Antártica.
¿Cuántas y cuáles son las placas intermedias?
Las ocho intermedias son:
- Placa Caribeña.
- Placa de Nazca.
- Placa Filipina.
- Placa Arábiga.
- Placa de Cocos.
- Placa de India.
- Placa de Scotia o Escocesa.
- Placa de Juan de Fuca.
Debido a que he separado las mayores de las intermedias, que aparecen juntas en el mapa, los números de mi lista no son coincidentes con los del dibujo,
¿Cuántas y cuáles son las placas menores?
El número de placas menores cambia según los autores que se sigan, desde una docena hasta más de 40. La discusión permanece, y algunos asumen que en realidad algunas de las que se mencionan serían terranes (concepto que develaremos más adelante). Yo les presento el listado más completo posible, porque más vale que sobre y no que falte ;D .
- Placa Amuria
- Placa Apuliana o Adriática
- Placa Cabeza de Pájaro o Doberai
- Placa de Altiplano
- Placa de Anatolia
- Placa de Birmania
- Placa de Bismarck del Norte
- Placa de Bismarck del Sur
- Placa de Chiloé
- Placa de Futuna
- Placa de Gorda
- Placa de Juan Fernández
- Placa de Kermadec
- Placa de Manus
- Placa de Maoke
- Placa de Nubia
- Placa de Ojotsk
- Placa de Okinawa
- Placa de Panamá
- Placa de Pascua
- Placa de Sandwich
- Placa de Shetland
- Placa de Timor
- Placa de Tonga
- Placa de la Sonda
- Placa de las Carolinas
- Placa de las Marianas
- Placa de las Nuevas Hébridas
- Placa de los Andes del Norte
- Placa del Arrecife de Balmoral
- Placa del Arrecife de Conway
- Placa del Explorador
- Placa del Mar de Banda
- Placa del Mar Egeo o Helénica
- Placa del Mar de las Molucas
- Placa del Mar de Salomón
- Placa Iraní
- Placa Niuafo’ou
- Placa Rivera
- Placa Somalí
- Placa Woodlark
- Placa Yangtze
¿Qué características generales tienen esas placas?
Como ya les señalé al hablar de la Teoría de Deriva de Continentes, la principal diferencia con el paradigma actual era precisamente suponer que los desplazamientos de grandes masas correspondían siempre a continentes moviéndose sobre los fondos oceánicos.
Hoy sabemos que las placas móviles son en realidad porciones litosféricas que pueden o no llevar un «pasajero» continental. De hecho, ya que ninguna de las placas mayores o intermedias tienen límites coincidentes con los bordes de un continente, podría considerarse que los dos tipos de placas son las puramente oceánicas, como la Pacífica, o la de Cocos entre otras; y las mixtas, como la Sudamericana, que tienen tanto corteza continental como corteza oceánica.
Recordemos que la corteza oceánica es más pesada y está dominantemente conformada por rocas ricas en Silicio y Magnesio, por lo que se la suele llamar corteza simaica, mientras que la corteza continental es más liviana, y conocida como siálica por el quimismo de sus rocas en el que predominan el Silicio y el Aluminio.
¿Qué son los terranes?
Los terranes, cuya denominación completa es «terranes tectonoestratigráficos», son fragmentos de material cortical o litosférico arrancado de una placa y emplazado por acreción en otra diferente, a la que suele unirse a través de una zona de fallamiento. Cada terrane mantiene la identidad geológica que la hace semejante a la placa de origen, y perfectamente distinguible de los terrenos que pasan a rodearla luego de su unión a la placa de destino.
Verán que he escrito más arriba «fragmento cortical o litosférico», porque los terranes pueden no desprenderse en todo el espesor de la placa original. Cuando hayamos avnzado un poco más en la Tectónica marco, volveremos a hablar de los terranes; por ahora señalemos que se cuentan por decenas los sitios que se han postulado como terranes, sin que todos ellos hayan alcanzado el consenso de todos los investigadores.
El concepto mismo de terranes surgió en la segunda mitad del siglo pasado, en la década de los setenta, a partir de estudios del complicado patrón imperante en la Cordillera Pacífica del borde orogénico de Norteamérica. Pero como ya les dije, volveremos sobre esto más adelante.
Por ahora digamos que existen decenas de emplazamientos que se han considerado como terranes, no sin que haya polémicas al respecto. Se ha llegado a decir que el concepto de terrane es usado cada vez que algún investigador carece de explicaciones para las características litológicas y estructurales de un territorio medianamente marginal.
¿A qué profundidad está el límite de despegue y desplazamiento tangencial de las placas?
En principio hay un consenso generalizado acerca de que la superficie horizontal de despegue ocurre en la interfase litósfera – astenósfera (asthenos: débil, y sphere: esfera), ya que allí las rocas se encuentran en entornos de presión y temperatura muy próximos a los requeridos para su fusión, por lo cual su comportamiento es muy dúctil y permite el movimiento de la litósfera sobre ella.
Esto significaría que la superficie de despegue sería a una profundidad de alrededor de 100 km. No obstante, también hay aquí alguna polémica, ya que algunos estudios han señalado que la astenósfera no es una capa continua, y hasta hay lugares en los que no ha sido detectada, de allí que su papel en la deriva de las placas podría estar siendo sobrevalorado. Pero también de esto volveremos a hablar cuando tengamos más clara toda la dinámica de la Tectónica de Placas.
¿Cómo se reconocen los límites de las placas?
Que las placas se desplazan es algo largamente probado, y eso lo pueden volver a leer en uno de los posts que tenían que repasar para hoy, pero aquí la pregunta es otra. Lo que queremos saber es por qué se colocan los límites entre placas en determinados lugares y no en otros.
Básicamente por la distribución global de los terremotos, que se atribuye a la existencia de líneas de debilidad planetaria, que muy bien pueden considerarse como bordes de placa; por análisis paleomagnéticos; por la posición de las cadenas de islas y su relación con el vulcanismo; por la diferencia entre distancias de puntos en placas diferentes, contrastada con la distancia constante de localidades en la misma placa, etc.
Cuando hablemos de los movimientos de las placas, sus direcciones y mediciones de velocidad, este punto se verá mucho más completo.
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: La imagen que ilustra el post es de este sitio.